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ABSTRACT

The search for a universal solution of the equations of motion for a satellite or-
biting an oblate planet is a subject that has merited great interest because of its
theoretical implications and practical applications. The discovery of such a solu-
tion should motivate a reassessment of both the theories that exhibit singularities
and the physical effects implied by singularities. The practical importance of such
a solution is the efficiency of simple analytic formulas in predicting simultaneously
the paths of large numbers of satellites in a multitude of orbits. Here, a complete
first order solution to the problem of a satellite, perturbed only by the oblateness
of the Earth, is displayed. The orbit is free of singularities for all parameters and

is valid for 1000 revolutions with a relaiive error of the order J? a 10-6.
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NOTATION

semi major axis of the initial instantaneous ellipse
cos g

eccentric™*y of the initial instantaneous ellipse (0 < e << 1)

2¢co8?é dg

~qt
const .nt value of r e ds

along an orbit, approximately equal to the
initial magnitute of angular momentum

inclination of reference plane

initial value of ¢

oblateness coefficient of the planet (coefficient of the second harmonic in

the expansion of the gravitational potential)

: (57)

h*/GM where G is the gravitational constant and M is the mass of the
planet

equatorial radius of the planet

radial distance from the center of the planet to the satellite

sin 1

time

initial value of ¢

£

r

gravitational potential

latitude of the satellite

longitude of the satellite

angle from line NON' to the satellite measured in the reference plane
(Fig. 5.1)

initial value of 6

longitude of line NON' (Fig. 5.1)

initial value of Q

argument of perigec of the initial instantaneous ellipse

Ix
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I. INTRODUCTION

A characteristic feature of practical satellite orbit prediction is that the engi-
neer may deal with numerous satellites in a great variety of alternative orbits. Un-
der these and many other such circumstances analytic relations which can quickly
approximate an orbit may be far superior to large numerical models. While many
analytic methods have been developed for the artificial satellite age, most are not
used in practical orbit prediction because they violate one or more of the following

principles:

e The method should provide a solution that is significantly more accurate
than the two-body solution.

o The real physical effects of the orbit should be easily distinguishable in the
solution.

e The solution should be universal; it should be valid for all orbital parameters.

The motivation for this research was the desire to develop a method for satellite
prediction that would embody these characteristics.

In this analysis, a solution to the equations of motion of a satellite around an
oblate planet is found by use of a variation of the perturbation technique known
as the Method of Strained Coordinates. The orbit is valid for 1000 revolutions
with a relative error of 107, The solution which is valid for all eccentricities and
for all inclinations, was obtained by extensive use of the symbolic manipulation
program MACSYMA.

The analysis begins with a background discussion of some of the competing
satellite orvit theories. There is then a development of the equations of motion

beginning with a derivation of the two-body solution. The various forces which act



to disturb the two-body orbit are highlighted; a more thorough discussion is given
for the effects of oblateness. There is a complete treatment of the perturbation
technique as the equations of motion are solved in detail. The complete first order
solution is displayed as a function of coordinates and as a function of the orbital
elements. In addition, an independent analysis of the polar and equatorial orbits

is performed to serve as a check of the general solution.




II. BACKGROUND

A. INTRODUCTION

The theory of flight of artificial satellites is closely related to classical celes-
tial mechanics, one of the oldest and most highly developed branches of science.
The equations which describe the motion of an artificial satellite are in principle
identical to the equations of motion of natural celestial bodies. It is not surprising
then that the results originally derived in classical celestial mechanics have been
freely used to explain the motion of artificial celestial bodies.

The foundations of classical celestial mechanics were established in the eigh-
teenth century when Clairaut, d’Alembert, Laplace, Lagrange, and Euler intro-
duced theories and analytical methods to explain the large deviation of the Moon
from an elliptic orbit due to solar attraction. These theories all supplemented
or complemented the pioneer work that had been done by Newton. Newton had
correctly indicated the Moon’s variation in eccentricity and inclination and the re-
gression of the nodes; however, his published theory accounted for only half of the
motion of perigee. (A century later an unpublished work was found to contain the
full explanation.) Clairaut in 1749 was on the verge of substituting a new law of
gravitation for the Newtonian law when he found that second order perturbations
removed the discrepancy in the motion of perigee.

In that same century, Euler investigated and developed the perturbative
function and began the development of the method of variation of parameters,

which was later extended by Lagrange.




Lagrange, Laplace, and Poisson all advanced the discipline through their
investigation of the stability of the solar system. Later, in the nineteenth cen-
tury, the use of Hamiltonian mechanics was used to great advantage by Delaunay
whose work influenced the innovators of artificial satellite orbit prediction, namely
Brouwer, Kozai, and Garfinkel.

The introduction of the modern computer and the launch of the first artifi-
cial satellites had a profound effect on the science of celestial mechanics. Classical
celestial mechanics had been essentially a contemplative science with the principle
aim being to study the laws of motion of existing heavenly bodies. In contrast, the
science of the flight of artificial satellites is an active engineering science concerned
with determining or predicting relatively short term orbits, and in many cases con-
trolling the satellite’s motion through on-board propulsive devices. It was in the
exciting climate, following the successful launchings of the first artificial satellites,

that most of the new methods of satellite orbit prediction were developed.

B. THE USE OF HAMILTONIAN MECHANICS IN SATELLITE
ORBIT PREDICTION

There are certain schools of thought in dynamic astronomy and theoretical
physics that support the loyal use of Hamiltonian mechanics [Ref. 1, p. 228],
and many of the new methods in general perturbations take advantage of the
elegant formalism offered by the Hamiltonian method. The Hamiltonian method
is referred to here as the formal process of writing the equations of motion for a

satellite in the canonical form:

dg, OH dp, —0H

dt ~ dp, dt = dq,

(r=1,2...3n) (2.1)

where ¢, = generalized coordinates




pr = generalized momenta

3n dr
H = zp’d_qt_L

1
(H is the Hamiltonian and L is the Lagrangian, L = T — V, kinetic energy -
potential energy).

The solution to (2.1) may be written down if a function S can be found, where S

is any complete solution of the Hamilton-Jacobi equation

a—S+H (q 93 t) = (2.2)

it should be noted that (2.2) is tractable only if the variables ¢, and t are separable
within S and H.

Although this present analysis does not use Hamiltonian mechanics to solve
the equations of motion, a summary of its use is merited since the advances in this
area have been an invaluable contribution to general perturbation theory.

In celestial mechanics, one may formulate a Hamiltonian that represents the
gravitational attraction of the central force and add to it terms which are “per-
turbing Hamiltonians.” Various sets of canonic variables may be chosen with the
goal of expressing a zero-order Hamiltonian in a simple form and the higher order
effects in an iterative fashion. Each term then may be dealt with through a succes-
sion of canonic transformations. Delauney introduced a systematic procedure for
isolating parts of the Hamiltonian and then generating a suitable transformation
in successive steps. A particular feature of his approach is that a periodic term in
the Hamiltonian may be eliminated with each canonical transformation [Ref. 2|.
While DeLauney used a procedure that eliminated one term at a time, von Ziepei
devised a technique that eliminates one angular variable with each transformation.

This method reduces the numb.r of degrees of freedom while at the same time




imparting to the transformed Hamiltonian a symmetry of the unperturbed system
[Ref. 1]. The eliminated variables are referred to as ignorable coordinates since
they do not participate in the solution of the transformed equations of motion but
can be recovered after the solution has been obtained.

Using von Ziepel’s method, Brouwer devised one of the most notable general
perturbation theories {Ref. 3]. Prior to Brouwer’s method, all previous work in
artificial satellite theory had written the Hamiltonian as a Fourier series in the
mean anomaly with coefficients that were infinite series in powers of the eccen-
tricity. Brouwer used an elliptic approximation for the potential and obtained a
complete first order theory with some second order development using canonical

transformations. The essence of Brouwer’s method was to write equations (2.1) as

dL, 0 dl; oH
4L, _oH g0z (2.3)
dt al; dt oL;
where
Ll =y GMa ll =M
L2=L1v1—'82 lz=w
L3:L2C051' 13=ﬂ
are the Delauney variables where
a - semimajor axis e - eccentricity
1 - inclination M - mean anomaly

w - argument of perigee {1 - longitude of
ascending node

Referring back to the Hamilton Jacobi equation (2.2), the function S is used as
a generating function to find a new Hamiltonian that leads to simplified canonic
equations. By choosing S correctly, Brouwer was able to find a canonical transfor-
mation from the Delauney variables to a set of double primed Delauney variables

(LY, I') such that (2.3) have the form

10




dL! dY _ 3H"

dt dt ~  dL;

(2.4)

where H" is the Hamiltonian expressed in terms of double primed orbital elements
by
L} =vVGMa" =M

L= LVITeR [f=u"

s = Ly cos1” Is=10"

The double primed orbital elements are related to the unprimed elements by

a=a"+ea e=¢e"+ee

t=1"+e M=M"+eM

v=w"+ew N=0"+¢eN
where the quantities ea,ce, €1, e M, ew, €f), are periodic functions of the double
primed orbital elements.

Equations (2.4) are solved for the double-primed Delauney variables which
can then be expressed in terms of the original variables.

The results initially obtained by Brouwer were not valid at the critical incli-
nation of 63°.4, and they were questionable when either the inclination or eccen-
tricity were near zero [Ref. 4]. O. K. Smith devised a method for dealing with the
problem of zero inclination and eccentricity [Ref. 5], but Brouwer subsequently
challenged the validity of his method. Later, Lyddane [Ref. 6] was able to suc-
cessfully remove the restrictions on small values of eccentricity and inclination by
reformulating Brouwer’s work in terms of an alternate set of variables.

Brouwer used the central force term as the first approximation for the po-

tential since there is no exact solution to the equations of motion of a satellite




under the influence of the more complex potential described by an oblate planet
having axial symmetry. Other authors have attempted to introduce a new poten-
tial which approximates the Earth’s potential better than the central force term
alone and also leads to an exact solution. Most notable has been the work of
Sterne [Ref. 7] and Garfinkel [Ref. 8]. Sterne’s potential function accounts for
most of the standard potential through the second harmonic and it leads to a
solution of canonical constants that are free of first order secular perturbations.
The remaining effects of the earth’s oblateness and other forces are allowed for
in the perturbing Hamiltonian which causes the cix canonical constants of the
unperturbed solution to undergo variations with time. Sterne provided the inspi-
ration for Garfinkel’s method which is essentially the same as Sterne’s but more
developed. Garfinkel included the second and fourth harmonics and arrived at
a solution that is reducible to quadratures. Garfinkel’s original solution was not
valid at the critical inclination, but in a later paper he removed the singularity
through a variation on his perturbation theory |[Ref. 9].

While Garfinkel did his analysis in spherical coordinates, Vinti [Ref. 10],
derived a potential expressible in oblate spheroidal coordinates. In his original
analysis, Vinti introduced a potential function and associated coordinate system
that would lead to the separability of the Hamilton-Jacobi equations. In a subse-
quent work [Ref. 11}, Vinti showed that the equations result in a solution reducible
to quadratures. The Vinti potential is an exact expression of the Earth’s potential
through the second harmonic. The theory provides perturbed coordinates, not
perturbed elements. In his second order analysis [Ref. 12], Kozai criticized this
characteristic, and he chose not to use the Vinti potential since it would require

changing the definitions of the conventional orbital elements.




Morrison [Ref. 13] showed that the von Zeipel method is a particular case of
the method of averaging, and Liu |Ref. 14] used the latter technique to study the
combined effects of air drag and planet oblateness on a satellite orbit. The method
of averaging, unlike von Ziepel’s method, does not require that transformations
be canor "-al. The method of averaging has been used extensively in recent years
by Lorell and Liu (Ref. 15|, McClain {Ref. 16], and Hoots {Ref. 17]. However, the
validity of the method has been challenged; most notably Taff [Ref. 18] doubts
its rigorous foundation. Arnold [Ref. 19] notes that the principle of averaging is a
vaguely formulated and rigorously untrue assertion, but he adds that sometimes
such assertions are fruitful mathematical sources. It should be also noted that
the solutions obtained in Liu’s analysis [Ref. 14] are not valid for near circular
equatorial orbits nor at the critical inclination, while those obtained by Hoots are
valid only for small eccentricities (0 < e < .1), and they are invalid at inclinations
near 0° or the critical.

Hamiltonian mech.anics has provided a rich source of literature in orbit the-
ory; however its practical applicability has been questioned in some textbooks.
Roy [Ref. 20; briefly outlines the use of the canonic equations, while Tafl [Ref.
18p. 322| states tnat he does not see any additional practica! applications provided.
Baker [Ref. 21] chooses not to represent the subject. A general criticism is that
the process of generating suitable transformations in the perturbation procedure
tends to make the coordinates and the momenta less distinguishable on physical
grounds and more difficult to relate to the set of natural coordinates which were
used to write down the initial set of differential equations. While the ultimate
form of the governing equations may be simple to solve, there remains the tedious
task of obtaining explicit results in terms of physically meaningful coordinates or

elements.




C. KOZAYS METHOD

Prior to his work cited above, Kozai [Ref. 22| developed a method for find-
ing the perturbations on the orbital elements of a satellite considering only the
oblateness of the Earth. Kozai developed a disturbing function based on the
Earth’s departure from a sphere, and he used a version of Lagrange’s planetary
equations to formulate the solution. Kozai used the standard form for the Earth’s
potential and included the harmonics J,, Jg, and J,. Despite the use of the higher
harmonics, the theory is first order. Kozai expressed short-period terms in J;, the
secular in Jz, Jy, and JZ, and the long period terms in J3, §:, and §: The analytic
expressions are developed using the standard orbital elements.

Kozai’s work is cited here because, due to its simplicity, the method has be-
come very popular in many textbooks and handbooks on orbital mechanics. [Refs.
20, 23, 24]. However, Taff cites Kozai’s method as an example of misapplication
of perturbation theory [Ref. 18p. 332]. Taff challenges the assumptions made by
Kozai in his analysis, and he points out that the method is invalid at the critical
inclination.

As was stated in Chapter I, a motivation for this current analysis was the
purpose of finding a perturbation method that would lead to universal solution. All
of the methods discussed thus far have particular problems at certain inclinations
or eccentricities. Some of the problem cases have been resolved by unique efforts
(These cases are discussed in Appendix C.); however, one should question the
underlying validity of any perturbation method that produces singularities. There
has been no satisfactory way found for avoiding the critical inclination singularity

in Kozai's method.

10




D. THE DIRECT METHODS

R. E. Roberson [Ref. 25] devised an approach for finding the qualitative
and approximate quantitative results concerning the behavior of a set of orbital
elements in the gravitational field of an oblate planet. The motion of a near
satellite around the planet is simply described to first order by introducing a frame
of reference which contains a mean orbital plane having a constant inclination.
Both the reference frame and the orbit plane rotate at a constant angular velocity.
With respect to this doubly moving reference frame, the motion of the satellite
differs from pure elliptic motions by only periodic perturbations.

King-Hele [Ref. 26| advanced the approach taken by Roberson. He intro-
duced a non-rotating reference frame with a orbit plane that continually rotates
at a non-constant rate about the Earth’s axis. A relation is found between the
rotating orbit plane and the angular rate of travel of the satellite. The equations
of motion are written in position coordinates, but are subsequently rearranged
in terms of a modified set of orbital elements. The inclination of the rotating
reference plane is held strictly constant in the analysis. King-Hele formulated
the problem by employing a power series expansion in terms of the eccentricity;
therefore, the method is limited to small eccentricities. The final solution con-
tains an incomplete set of workable elements and hence the method gives mostly
a qualitative description of the satellite’s behavior due to oblateness.

King-Hele’s analysis was the inspiration for the work of Brenner and Latta
[Ref. 27|. They improved King-Hele’s original analysis by abandoning the condi-
tion of constant orbit inclination and by retaining the eccentricity in closed form
expressions. Brenner and Latta limited their analysis to small eccentricity al-
though the method is not so restricted. They obtained an approximate first order

solutinn and demonstrated that the method is valid for higher order analysis.

11




An advantage of the direct method is that one may use ordinary perturbation
analysis (the Method of Strained Coordinates) to solve the equations of motion. In
addition the chosen set of orbital elements used throughout the analysis correspond
closely with the classical elements; therefore, physical interpretation is facilitated.

The disadvantage in using the method is shared by most all other procedures
that must use a perturbation scheme. The process requires the manipulation of
massive algebraic expressions. However, this drawback has been greatly reduced

by the introduction recently of large symbolic mathematics programs, such as

MACSYMA, that handle the bookkeeping.




III. THE TWO-BODY PROBLEM

A. INTRODUCTION

The central problem of celestial mechanics is the two-body (or Kepler) prob-
lem. Simply stated, the problem is to solve for the motion of two particles inter-
acting through their mutual gravitation in an isolated space. A solution of the two
body problem often represents physical reality in an acceptable way. For instance,
the orbit of the Earth around the Sun may be treated, to a first approximation, as
a two-body problem because the influen: e of perturbing bodies, the Moon, Jupiter,
etc., are small compared with the Sun’s gravitational attraction. Likewise, more
complex problems such as a spacecraft mission to Mars, a four body problem -
Earth, Sun, Mars, spacecraft, may be treated by breaking the flight into three
two-body problems. Such a technique is used in the patched conic method where
two-body solutions are literally patched together.

There are other more important reasons for studying the two-body probiem.
It is the only gravitational problem in dynamics, other than very specialized cases
in the three-body problem, for which there is a complete and general solution.
and it is possible to gain considerable insight into more general phenomena of
motion by a thorough study of the two-body problem. In fact, the most complete
theories of celestial motion use functions appearing in the solution of the two-
body (elliptic case) problem as elementary functions. The solution is central to
this present analysis because it will serve as a starting point for the generating of
analytical solutions that are valid to higher orders of accuracy. These solutions,

called general perturbation theories, are the subject of Chaper V1.
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In this chapter, the equations for the two-body problem will be derived and
solved. The first step is to chose a coordinate system in which the laws of Newton
hold (an inertial coordinate system). In practice, the reference frame of the “fixed”
stars provides a very good approximation to an inertial reference frame. Next,
following the method of Nelson and Loft [Ref.28 pp.82-84] it will be shown that
the center of mass of two bodies in this coordinate system is also an inertial
reference point. Then the equations of motion will be derived and solved using

the polar angle 6§ as the independent variable.

B. THE DIFFERENTIAL EQUATION

Figure 3.1 shows two mass centers at position r; and r,. The o.igin O is
defined to be an inertial reference point. The distance between the two mass
centers is r where

r=r, —TI;.

Combining Newton’s third law of motion and his law of universal gravitation gives

Figure 3.1: Two Body Problem
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where G is the universal gravitational constant.
Adding (3.1) and (3.2) ard integrating results in
dr; dr;

my—- +mp—_- = constant. (3.3)

Now the center of mass of the system (barycenter) in Fig. 3.1 is defined as:

(m1 + mz)ro = mT; + mars. (3.4)

By combining equations (3.3) and (3.4) the following result is obtained,

drg my dr,; m dr,
—_= ———— 4+ ——————— = constant.
dt my+my dt  my+m,dt

So the barycenter moves with constant velocity, and it too is an inertial reference
point. Subtracting (3.1) from (3.2) results in
d’r; d'ry, _dr  —-G(m;+my)r

@ a s e (8:9)

the solution of which gives the position of either body relative to the other. Now

choose the barycenter as the origin and define the position of m; and m,, respec-

tively, as
'oi=ry—-r, = —————T
m; +m;
m
rep =r9—-r, = —T.
m; + mp
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Substitution of the above equations in (3.1) and (3.2) yield separate equations for

the motion of each body relative to the barycenter:

d’r, + d’rg,; _ d*ry, _ -Gm3 .
dez ' a2 de? (my +mg)?rd,
(3.6)
d’ry  d’ry;  d'rg, -Gm}
ar dr . dtr | (mrm)ing

Equation (3.5) and equations (3.6) are of identical form, differing only by a con-

stant, so that

dr GMr
7 = =0 (3.7)

is the vector differential equation of motion for either of the two bodies. r is the
distance to the other body, or to the barycenter, according to the appropriate
choice of GM. For the problem of a satellite orbiting the earth, the mass of the
satellite can be neglected in comparison with the mass of the earth, therefore GM

is the product of the universal constant and the mass of the earth.

C. THE INTEGRATION OF THE TWO-BODY PROBLEM
There are no cross products involved in equation (3.7); therefore, all motion
must lie in the plane that contains r and %. The scalar components of acceleration

are

o 2dr df

T&YE + IZ{— (38)
d*r d#\* —-GM

7 &) = Y
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Writing (3.8) as 14 (r’%) = 0 and integrating yields

6
r’% = h = constant (3.10)

where h is the specific angular momentum.
Equation (3.10) is an exact integral of (3.8). It corresponds to Kepler’s
empirical law of constant areal velocity which states that the area swept out by

the radius vector of a planet is uniform in time.

From (3.10), the independent variable may be changed from ¢t to 6, e.g.,

d_hd
dt  r*df
o (3.9) becomes
1dr 2 (dr\' 1 _GM _ & 1_GM
et e\@) TrT R ST e

Since this equation is linear in the reciprocal of r, it may be written as

Fu oM
do? YT R
which has the solution
GM
u= —h—2—+Acos(0—w) (3.11)

or reintroducing r, (3.11) becomes

o h|GM
"~ 1+ (Ah?/GM) cos(f — w)

which may be written as the polar equation of a conic section
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_ p
T T+ ecos(f-w)

(3.12)

so that

p=h?/GM and e = AR?/GM.

D. ELLIPTIC MOTION

Equation (3.12) is the equation of a conic with prime focus at O. The conic
has a semi-latus rectum h?/GM, an eccentricity e, and a semi-major axis a that
makes an angle f = § — w with the horizontal axis (Figure 3.2). The extreme
endpoints of the major axis of the orbit are referred to as apsides or apses. The
point nearest the prime focus is called perigee and is given by § = w. The point
farthest from the prime focus is given by § = w + 180° and is called apogee. The
angle w, “argument of perigee”, will be discussed later in this chapter.

The energy of the satellite in the orbit is conserved and is equal to

E=m,(v*/2 - GM/r) =m,C

. /7
origin ot focus:

Figure 3.2: The Elliptic Orbit
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where C is the total energy of the satellite, v?/2 the kinetic energy and —GM/r
the potential energy of the satellite, all per unit mass (m,). In general C is equal
to —GM/2a, so that the satellite’s energy depends only on the semi-major axis.

From this relationship it is easily shown that the satellite’s velocity is given by

= GM(2/r - 1/a).

Then the relationships r, = a(1 — ¢) and r, = a(1 + ¢) result in

o = GM(1 +e)
? a(l —e)
and
vV = ————
e a(l + )

so that the velocity is a maximum at perigee and a minimum at apogee.
The area of the ellipse is 7a?y/(1 — €?), and the rate of description of area is

T = % Since h? = GMa(1 — €?), the orbital period may be written as

By defining the mean motion n as T = zf, so that n%a® = GM, one may proceed
to derive an expression for position versus time in the elliptic orbit.

The orbital ellipse APB with center at C touches at perigee, A, and at
apogee, B, a concentric circle also centered at C which has as a radius the semi-
major axis of the ellipse. The circle C is known as the auxiliary circle, and is

geometrically related to the ellipse by the relation

PN = P'N\/(1 - ¢?)
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where ¢ is the eccentricity, P any point on the ellipse, N the foot of the perpendic-

ular through P upon AB, and P' the intersection of this perpendicular with the

circle C. The angle ACP' = E is known as the eccentric anomaly (Figure 3.3).
Let 7 be the time of perigee passage and t the time, then ¢ — 7 is the time

since perigee passage. The quantity,

M =n(t - 1), (3.13)

is called the mean anomaly. Using the geometry of Figure 3.3, one may derive the

following relationship between the anomalies:
M =F —esin E, (3.14)

which is known as Kepler’s equation. If the position of a satellite in a fixed orbit
relative to the earth is desired at some specified time t, then equation (3.13) gives

M and (3.14) gives E . The distance to the satellite is found by the relationship

r=a(l —ecos E).

The angular position of the satellite is defined by the true anomaly, § —w = f, or

the angular distance from perigee:

Figure 3.3: The Eccentric Anomaly
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1+ e\1/? E
) tan 2"

tan (£/2) = (=
In actual practice, the second step in the above process, solving (3.14) is a bit
more involved since a closed form solution to Kepler’s equation does not exist.
However, dozens of methods of successive approximations have been devised. For
instance, by use of a numerical method M can be calculated for a few values of £

and then the correct E can be found by inverse interpolation.

E. CONSTANTS OF THE MOTION

In section B, the original equations of motion (3.1) and (3.2) were reduced
o (3.7). Thus the problem was reduced from one of three second order differential
equations requiring twelve constants to one of three second order equations with six
constants. A discussion of the constants of motion, some of which were introduced
during the solution of the two-body equation, is the purpose of this section. The
six constants may be written in a variety of forms, a choice among forms is usually
made with the purpose of simplifying the problem.

Equation (3.7) was solved by the classic technique of changing the indepen-
dent variable from t to 6. But (3.7) in its present form is integrable; that is,
there exists sufficient time independent first integrals, or functions that are con-
stant along the motion, to specify each orbit. The first of these is the angular
momentum. Cross-multiplying (3.7) by r results in

d’r

rx —+rx —r=20
dt2+ rs

or

d’r
ry — =

dt?
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And since

d dr dr dr d’r
G (rxG) =S xE et
then
%(r X V) =0.
By integration
rxv=h

where h, the angular momentum, provides three constants of motion. Similarly,

by cross-multiplying (3.7) by h, one may obtain the Lenz vector

e=dr b 1 (fszo)
r dt

where e is a vector along the major axis of the orbit pointing toward the position of
closest approach or perigee (|e| = €). The vector e provides only two independent
constants since h and e are perpendicular vectors (h - e = 0), and one remaining
constant is required.

The vector integrals h and e specify that the orbit will lie in the plane per-
pendicular to h and have a shape determined by e. The classical orbital elements:
a (semi-major axis), e (eccentricity), ¢ (inclination), {1 (longitude of the ascending

node), and w (argument of perigee), may be derived from these vectors.

From (3.12) the equation for r may be written as

_ h*/GM
" 14ecos f

where f is the angle between e and r (the true anomaly).

Restricting e to the elliptic case results in
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h? h?

= < — =
T GM1+e) - TGM(-¢ 7
so that the major axis of the ellipse is
%a N 2h?
=1+ ry s
TR GM(1 - @)

Knowing e and a gives the shape and size of the orbit. The orbit now can be
oriented in a coordinate system. Reference is made to Figure 3.4 and the two
angles : and Q. 1 is the inclination of the orbit plane defined as the angle between
the equatorial plane and the orbit plane. Since this is the same angle as the angle
between the z axis (k unit vector) and the angular momentum vector h, ¢ may be

found by

Figure 3.4: Constants of the Orbit
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The angle 1, the longitude of the ascending node, is the angle in the equato-
rial plane, between the i unit vector and the point N where the satellite crosses
through the equatorial plane in a northerly direction measured counterclockwise
when viewed from the north side of the equatorial plane. The vector n lies along

NO such that

n=k x h.
Therefore ) may be found by
cos {1 = E.
n

As was stated above, the vector e, points toward perigee. The angle w (the
argument of perigee) measures the distance between NO and perigee and can be
found by

n-e

COsS W= —.
ne

With the constants a,e,?,{l,w specified, the orbit is defined in the coordinate
system. The remaining task, to locate the satellite in the orbit at any time,
requires one more constant.

The final constant of motion is given by the relationship between the mag-

nitude of the angular momentum and the true anomaly (f):

t b
/ hdt = /0 ridf.

By a change of variables from f to the eccentric anomaly F, the above equation
may be easily integrated. The result by this analytical method is identical to
equation (3.14), Kepler’s equation, which was previously derived by geometry.

The constant 7, time of perigee passage, is the final constant of integration.
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F. SUMMARY

This completes the analysis of the two-body problem. It has been shown that
a combination of six constants will strictly define the motion of a satellite under
the influence of a central gravitational force. The six that were chosen, referred
to now as the orbital elements, can be used to find other constants of the motion

including r and v, the distance and velocity vectors of the sa.ellite.




IV. SATELLITE PERTURBATIONS

A. INTRODUCTION

As was demonstrated in the last chapter, the classical two-body problem has
solutions that can be written in closed form when the polar angle (or the eccen-
tric or true anomaly) is used as the independent variable. If an additional force
acting on either of the two bodies is introduced, the resultine equations of motion
usually no longer have closed-form solutions. When the magnitude of such a force
is small compared to the central gravity term, the force is called a perturbation.
The resulting orbit experiences a small departure from the Keplerian orbit, at
least initially. These departures are also called perturbations. Under certain cir-
cumstances, it is possible to make analytic approximations to the effects of the
perturbing forces, though a precise solution cannot be obtained. Generally, the
methods consist in determining the exact equations of motion and then assuming
that their solutions do not depart appreciably from the case of no disturbing force.
Then only an indication of the actual motion of the body can be obtained. Pre-
cise solutions can be found for specific initial conditions by numerical integration
techniques, but these solutions give little insight into the dependence of the mo-
tion on the parameters of the disturbing force. In some cases, the approximations
obtained with analytic methods may exceed the precision of numerical methods,
especially if the prediction is required for a long neriod of time and there is a clear

dominance of one particular force.
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In the case of a close satellite about a non-spherical planet, a potential func-

tion V can be formed such that

V=W+R

where V; is the potential function due to the two-body problem and R the dis-
turbing function that is at least an order of magnitude less than V,. Many general
perturbation theories make use of the fact that the two-body orbit of the body due
to V, changes slowly due to R, and they attempt to obtain analytical expressions
for the changes in the orbital elements due to R within a specified time interval.
If the elements of an elliptical orbit are ay, €9, to, {10, wo, and to, the ellipse with
these elements is referred to as the osculating elements at t5. The velocity of the
disturbed satellite at this time in its osculating ellipse is equal to its velocity in
the actual orbit.

At a future time t,, the elements will change due to the presence of K.
For instance, ay will be changed to a;, and the quantities (a; — a¢),(e; — €g).
etc. are called perturbations in the elements. Corresponding to the perturbations
in the elements are perturbations in the coordinates and velocity components.
There are, however, at least two reasons for using orbital elements rather than
coordinates to describe the motion of the satellite. First, the elements do not
exhibit a variability of anomalistic motion that the coordinates do, therefore any
variation can be attributed directly to the perturbing forces. Second, the elements
give a clearer geometric picture than do the coordinates; hence the effect of the
perturbation on the orbit can be seen immediately.

There are various kinds of disturbances that an orbit can experience, tne

severity of each is usually due to the altitude of the satellite. It is the purpose of
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this chapter to give a qualitative description of the most important disturbances,

and to relate the relative magnitudes of each.

B. THE EARTH’S GRAVITATIONAL FIELD

The two-body problem assumes that the earth is a sphere, while in reality the
earth is flattened somewhat at the poles and bulges correspondingly at the equator.
Such a shape is called an oblate spheroid. In the science of geodesy, it has been
useful to define a reference ellipsoid as a mathematical surface which is an idealized
approximation to the earth’s actual surface. The study of satellite orbits has
established a flattening of the terrestrial ellipsoid as 1/298.24, which corresponds
to a difference between the equatorial and polar radii of 21.4 kilometers.

Another surface commonly used in geodesy is the geoid, which is the equipo-
tential surface that coincides on the average with mean sea level in the oceans. The
geoid is everywhere perpendicular to a plumb-line since gravity is always normal to
its surface. Before the advent of artificial satellites, it was generally accepted that
except for relatively small variations resulting from the presence of mountains or
deep valleys, the geoid could be regarded as approximately an ellipsoid. Now, the
surface of constant gravitation can be more accurately portrayed by representing
the potential as a series of quantities known as spherical harmonics, each of which
makes a contribution, positive, negative, or zero, to the total. The contribution
of any harmonic is determined by a factor, usually represented by the symbol J
and commonly referred to as the value of that harmonic. These J values for a
planet’s gravitational field can be determined from observations of a satellite orbit
and they can be related to the shape of the geoid.

A large number of harmonics may be required to precisely represent a planet’s

gravitational field, but in practice the higher harmonics make such a small contribution
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that they can be neglected, at least to a first approximation. The zonal harmonic
Jo expresses the overall size of the geoid, while J), the first degree harmonic de-
termines the center point of the geoid in the north-south direction. The other
harmonics represent deviations from the spherical shape as shown by Figure 4.1.
It is seen that the contributions from the even harmonics are symmetrical about
the equator, while the odd harmonics corresponds to contributions that are asym-
metrical. The degree of the harmonic gives the number of undulations in the shape

of the surface.

Figure 4.1: Qualitative Representation Of The Harmonics Of The Geoid

The results given thus far consider only the zonal harmonics, which are in-
dependent of longitude. The tesseral harmonics give east-west deviations from
symmetry. Satellite observations of the tesseral harmonics have led to the con-
clusion that the equator of the earth’s geoid is slightly elliptical, the difference
between the longest and shortest axes being about 400 meters.

The following tables from Kozai [Ref. 29] gives representative values for the

coefficients of the earth’s zonal and tesseral harmonics.
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TABLE 4.1: ZONAL HARMONICS

I n Jn x 10° n  J,x10° |
2 108248 + .04 6 39 = .09
3 —2.57 + 01 7 -—-47 + .02
4 -184 + .09 8 -.02 £+ .07
5 -06 + .02 9 11 = .03

TABLE 4.2: TESSERAL HARMONICS

[n m J™ x 10° Onm |
2 2 232 % .30 -37°5 £+ 5°6
3 1 395 £ .36 22°.0 = 11°.0
3 2 41 + .36 31°.0 £ 14°.0
3 3 191 + .29 51°.3 £+ 2°.9
4 1 264 + .44 163°5 £+ 6°.5
4 2 A7 £ .06 54°0 £ 11°.0
4 3 05 £ .04 -—-13°.0 £+ 19°.0

C. ATMOSPHERIC DRAG

Atmospheric drag is the most complex and the most difficult of the artificial
satellite perturbations. The complexity arises from the fact that an exact force
law is not known and the atmosphere is variable. This variability results from
the fact that the atmosphere is not spherically symmetric and that lunisolar tides,
diurnal heating, strength of the solar wind, etc., all effect atmospheric density.
In addition, the atmosphere is moving with the rotating earth. Therefore this
perturbation is difficult to model analytically or numerically.

For most Earth satellites, atmospheric drag removes the satellite’s energy,
thereby causing it to drop in altitude and thus increase its speed. The increased
speed and the lower altitude increases the drag force with the result that the

satellite spirals into Earth.
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Satellite drag is measured along the same direction as the velocity vector of

the satellite. The formula used is

-1

FD=2

CpAp|v —Val(Va — V)

where v is the satellite’s inertial velocity, v, is the inertial velocity of the atmo-
sphere, p is the atmospheric density, A is the effective cross-sectional area of the

satellite, and Cp is the drag coefficient, Cp = 2.

D. SOLAR RADIATION PRESSURE

In contrast to drag which is a tangential force, solar radiation pressure is
radial. By solar radiation on a satellite is meant the net acceleration resulting
from the interaction (i.e., absorption, reflection, or diffusion) of the sunlight with
the surface of the satellite. In general, the illumination of a low altitude satellite
orbit will be non-uniform due to the Earth’s shadow, albedo, and atmospheric

absorption. The magnitude of the solar radiation pressure is given by

AP

47meD?

where A is the effective cross-sectional area of the satellite, P is the total radiated
solar power, m is the satellite’s mass, ¢ is the speed of light, and D is the satellite-
Sun distance.

It can be seen that the perturbing effect of solar radiation particularly effects
satellites with a large area to mass ratio. Such was the case of the satellite Echo I,
which when inflated was a sphere with a total exposed area of about 31,000 square
feet and weighed only 135 pounds. Its initial orbit was approximately circular with
an altitude of 1000 miles, but the pressure of solar radiation brought down the

perigee to 600 miles at times.
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A. OTHER PERTURBING FORCES

Gravitational perturbations due to other celestial bodies (the Moon, the Sun,
and the planets) are caused by the differences between the force on the Earth and
that on the satellite or the “tidal” force. Perturbing forces from the Sun and Moon
become significant as the altitude of the satellite increases. Planetary perturba-
tions are very small, with Venus and Jupiter providing the largest contributions.

Since classical mechanics is used in this analysis, relativistic corrections may
be regarded as a small perturbation to the motion. Other minor perturbing forces
include atmospheric lift and electromagnetic forces.

The following table from Milani [Ref 30] gives the magnitudes of various
perturbations on three different satellites:

TABLE 4.3: ACCELERATIONS ON SPACECRAFT AT VARIOUS
ALTITUDES (cm/sec?)

Geosynchronous LAGEOS  SEASAT
satellite

a = 42,160 KM 12,270 7,100
Cause A/M = .1cm?/g .007 .2
Earth’s 2.2 x 10! 2.8 x 10> 7.9 x 10?
monopole
Earth’s 7.4 x 1074 1.0x 107! 9.3x 107!
oblateness
Higher 4.5 x 10710 8.8 x10°® 7.0x10°*
harmonics
Moon 7.3 x 1074 21x107* 1.3x10°*
Sun 3.3x1074 96x10 5 56 x107°
Venus 4.3 x 1078 13x107% 7.3x10°°
General 2.3x10°° 9.3x107% 4.9 x 1077
Relativity
Air Drag 0 (7) 3.0x1071 20x10°°
So'ar 4.6 x 107° 32x1077 92x10"°
Radiation
Earth’s 4.2 x 1078 34x107% 3.0x107¢ |
albedo




V. DEVELOPMENT OF THE EQUATIONS OF
MOTION

A. PRELIMINARIES
1. Overview
In this chapter, the groundwork will be laid for solving the equations of
motion for a satellite about an oblate planet. To begin, a discussion of the assump-
tions made in the analysis will be given. Second, the special coordinate system,
which was introduced by King-Hele [Ref. 26| and refined by Brenner and Latta
[Ref. 27] will be developed, followed by a derivation of the relationships among
the astronomical angles of the coordinate system and the angles of a spherical
coordinate system. Next, an expansion for the potential of a planet modeled as
an oblate spheroid will be derived. Finally, the equations will be transformed so
that they can be solved by an ordinary perturbation method.
2. Assumptions and Limitations
The basis for the assumptions made in this analysis is the requirement
that a solution to the equations of motion for a satellite orbiting a planet be
accurate to within a relative error < 107%. Therefore, all perturbative forces
that are of magnitude 107® or smaller compared to 1 may be neglected. This
requirement then allows one to model the earth as an oblate spheroid with an
axially symmetric gravitational potential. This is to say that all zonal harmonics
except th: second in the expanded potential may be neglected. In addition, all

coefficients of the tesseral harmonics are small enough to neglect.
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The assumption of an axially symmetric potential is a reasonable as-
sumption if the earth is used as an example of an oblate planet. As was suggested
in Chapter IV, if one normalizes the expanded geopotential of the earth such that
the contribution from the central force (1/r?) is 1, then the contribution from the
gonal harmonic for the oblateness contribution is & 1073, and all other harmonics
(zonal and tesseral) are < 107€.

The gravitational effects of the Sun and Moon are also neglected. This
assyumption will remain valid ot ta a distance of at least 6,000 kilometers ab- ..
the Earth, where the oblateness perturbation is still about 1000 times larger than
the attraction of the Sun. However, at altitudes near geosynchronous (35,800 km)
the perturbative forces of the Sun and Moon are nearly equal to that of oblateness,
and therefore would have to be considered.

The most important limitation to the analysis is the neglect of atmo-
spheric drag. For high altitude satellites with small eccentricity, the neglect of air
drag is unimportant; however, for very low altitude satellites the effect of air drag
would begin to dominate the oblateness force after a number of revolutions. Also,
high altitude satellites with highly eccentric orbits would be greatly affected by
drag as they pass through perigee. For these particular cases, the desired accuracy
for 1000 revolutions would not be achievable: however, in many cases the solution
could be accurate for a few orbits. As was discussed in Chapter IV, air drag re-
mains the most difficult perturbation to model. Since an accurate geopotential
model allows for a better determination of fluctuations in drag of the atmosphere
through which the satellite is moving, the analysis conducted here is valuable even
when air drag becomes the dominating factor.

Also neglected in this analysis. are the remaining perturbative effects

mentioned in Chapter IV. Solar radiation pressure. the Earth’s albedo radiation
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pressure, and the general relativistic correction to Newton’s law of gravity are all
neglected since their relative contributions are small.

The final limitation to the analysis is the assumption that the differential
equations which describe the motion of the satellite have a solution asymptotic to
the form specified in the analysis. As long as the true solution does not depart
from the form specified, the analysis is valid.

3. Order of Magnitudes

Throaughout this analysis, reference will be made o the relative mag-
nitudes of the perturbing forces; hence it is important to establish a convention
for orders of magnitudes. The approach established by King-Hele [Ref 26] will be
followed here with the exception that a small eccentricity is not assumed. Here,
J = J,, the coefficient of the second zonal harmonic in the potential is used as the

basic small unit. Mathematically,

7(J,6) = O(J™8")

means that there exists for all

0<J<107%and 0 <6< (27)10°

a K independent of J and 6 such that

Ifi< KJ™6"
The following terms are defined:
Zero order = 0O(1) <~ 1.0
First order = 0O(J),0(J?%), (1302), .. < 107
Second order = O(J?),0(J%),0(J¢*),... < 107"




B. THE COORDINATE SYSTEM

Figure 5.1 is an inertial reference system of spherical coordinates with the
prime direction pointing toward the vernal equinox at epoch 1900.0. The equato-
rial plane, latitude (), and longitude (¢), as shown in the figure have their usual

meanings.

reference plane

equatorial plane

Figure 5.1: The Reference System

As was demonstrated in Chapter III, the path of a satellite of a strictly spherical
planet lies entirely in a fixed plane, and the motion of the satellite is described by
the solution to the two-body problem. With the angular momentum vector fixed
in space, the intersection of the orbit plane and the equatorial plane describe the
fixed angle {1 measured from the prime direction to the intersection (or node).
The longitude of the ascending node (f1), the inclination (¢), and the argument of

perigee (w). fix the orbit plane in the coordinate system.
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The effect of the oblateness perturbation is, in general, to move the satellite
out of the original two-body orbital plane. One specific effect is to rotate the
orbit plane about the planet in the opposite direction to the satellite’s motion.
The physics of this motion is easily demonstrated in Figure 5.2. Oblateness is
represented by an additional mass about the equator of the planet. The radius
vector r and the satellite S lie in a plane which is named here the “reference
plane”. If there were no equatorial bulge, the direction of the gravitational force
would coincide with the radine vector and the angular momentum vector would
remain in a constant direction normal to the plane. The equatorial bulge; however,
adds a component of force that does not lie along r. This additional force adds a
torque r = r x F. The direction of 7 is into the paper at S for a prograde orbit.
Therefore as the satellite orbits, the angular momentum vector rotates about the

Z axis. The reference plane also rotates, and the rotation is measured by the

change in (1.
Polar
axis
h Orbit S
plane™
F
r
A Equatorial
8 plone
r
F “\Oblate
spherowd

S

Figure 5.2: Rotation of the Reference Plane

The line NON' in Figure 5.1 is referred to as the “line of nodes™, and the

ascending node describes the point where the satellite enters the northern hemi-

37




sphere. For the two-body problem with a non-rotating plane, the line of nodes is
a fixed reference line. Now, for the rotating plane, when the satellite is actually
at a node, the line of nodes passes through the satellite, but at other times the
definition “line of nodes” is an arbitrary one, and the angle 11 is simply given as
a function of time.

Another motion of the reference plane that is a result of the oblateness
perturbation is an in-plane rotation called precession. As was demonstrated in
Chapter III, a particle executing bounded, non-circular motion in a central force
field will always have a radial distance from the force center that is bounded by
Tmaz < r < rmin. That is, r is bounded by the apsidal distance. Such an orbit is
called a closed orbit and it is characterized by the fact that all apsidal angles are
equal. For instance, the apsidal angle is 7 for elliptic motion. But if the radial
dependence deviates slightly from 1/r?, then the apsides will precess or rotate
slowly in the plane of motion (Figure 5.3). This motion is analogous to the slow
rotation of elliptic motion of a two dimensional harmonic oscillator whose natural
frequencies for each dimension are almost equal. The rotation of the line of apsides
is also known as the precession of perigee since the value for ¢ for which r is a

minimum varies in time as the apsides rotate.

Figure 5.3: Rotation of the Line of Apsides
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For a satellite orbiting an oblate planet the rotation of the line of apsides is
opposite the direction of satellite motion for inclinations less than sin™? /4/5 and
in the same direction as the satellite for inclinations greater than sin™'1/4/5. If

the inclination is exactly sin™! 1/4/5 then there is no rotation of the line of apsides,

and perigee remains constant. This inclination is known in Astrodynamics as the
“critical inclination”. A detailed discussion of the critical inclination is contained
in Appendix C.

A final motion of the reference plane caused by the oblateness perturbation

is the periodic variation of the inclination about the initial inclination ;.

C. ANGLE RELATIONS

As a preliminary to deriving the equations of motion, it is necessary that
the relationships among the spherical coordinates and the angles describing the
reference plane be established.

Reference is made to Figure 5.4, where i,1',j, and j' define the equatorial
plane. Let a,b, and c denote three unit vectors, where b and ¢ are in the reference
plane. ¢ points to the initial point § = 7 /2 in the reference plane where 6 is
measured from the line of nodes. b points to the position of the satellite, S. a is
perpendicular to the reference plane and therefore points in the same direction as
the angular momentum vector h. a and c¢ are both perpendicular to the line of

nodes. Then

b = cos ¢ coséi+sing cosbdj+sinék.

Now measure b from the line of nodes.

b = cos(é — ) cos 6i' + sin(¢ — N) cos 6]’ + sin 8k.
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a and c are therefore

a = -—sinj +costk

o
il

costj' +sintk.

Portion of the Reference Plone

-
”
’I
e N
\
\

”’
-

tines of Nodes

y |

Figure 5.4: Angle Relations

Since a and b are perpendicular, a - b = 0, therefore
tané = tanis sin(¢ — 0).

Continuing

b:c = |b| |c| cos(f — 7/2)

results in

sin(¢ — (1) cosé cost +siné sint = sind.
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And using the relation from equation (5.1) results in
siné = sin @ sint. (5.2)
Finally, from ¢ x b, the following relationship is obtained
cos § = cos Osec (6 — 11). (5.3)
(5.1), (5.2), and (5.3) are the required angle relations.

D. THE POTENTIAL

In Chapter III, a simplified gravitational potential GM /r was used with the
assumption that the attracting body was spherically symmetric. This simplified
potential caused the satellite to move in conic orbits. As has been stated, the
planets are not spherically symmetric but are bulged at the equator, flattened at
the poles, and are generally asymmetric. An expanded expression for the gravi-
tational potential will be developed in this section. The final expression for the
potential is subject to the assumption made in Section B of this chapter that the
planet about which the satellite revolves is approximately an oblate spheroid.

Now, regardless of the nature of an attracting body, the potential V must
satisfy one of the following differential equations. For regions within the attracting
matter

V*V = 47pG where p is the density (5.4)

which is Poisson’s equation.

For regions outside attracting matter
ViV =0 (5.5)
which is Laplace’s equation.
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This discussion will be restricted to Laplace’s equation which, if V is written

as a function of the spherical coordinates (r, 6, ¢), may be written as

19 zaV 1 0 ov 1 v
;361- (1’ _67) + 'r’cosé_a_g (COS5'8—6) + - coszé-é? =0. (5,6)

Any conservative force field F can be written as the gradient of a potential.
Equations (5.5) and (5.6) state that div (grad V) is zero. The assumption that F
is rotationally symmetric means that 3V /d¢ is zero. Therefore a solution of (5.6)

is sought that is a product of a function of r alone and a function of é alone:
V(r,8) = fi(r) - 12(6).

By multiplying (5.6) by r2, dividing by fi(r)f2(6), and rearranging terms, the

following result is obtained.

1dfadhy_ 1 90 ( d
fidr\" dr) T " frcos606 \“ a5 )"

Since the left side is a function of r alone and the right side is a function of é

alone, both members are equal to a constant, say n(n + 1). f; must satisfy

k3 (,z%

dr dr) =nlntUh

which has the solution

fri=Ar"""1+ Br™.

It is desired that this function be zero at r = oo, and that it be analytic and
single-valued there. Therefore n is chosen to be an integer greater than zero, and
B most equal zero. Therefore

f] — Ar—ﬂ—l.

The equation for f; is

d E _
7 (cos&zé—> +n(n+1)coséf, =0
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which may be rewritten as

d d
dsiné [(1 - Sin’J)F{:&] +n(n+1)f; =0. (5.7)

This is known as Legendre’s equation. Using the method of Frobenius, a series

solution to Legrendre’s equation is found to be
f2 = CP,(sin §).
Therefore the solution to (5.6) may finally be written as
V(r,6) = Ar~""'P,(sin 6)

where C is chosen as 1.

There are many ways to consider the polynomials P,. Rodrique’s formula for
P,(sin ) is

. 1 .2

- % § - 1\".
Fa(siné) 2nn! d(sin 6)" (sin )
so that

1
Pyo=1, P, =siné, P2=§(35in26—1), etc.

The general solution of (5.6) is then written as

[o,¢]
V(r,86) = > A,r "' P,(siné). (5.8)

n=0
The above mathematical derivation of an expression for the potential may
be enhanced by a more physical formulation. Referring to Figure 5.5, let a unit
mass m be placed at a point P which is a distance r from the center of mass of
a bounded distribution of total mass M. Let dm be an element of the mass at a

distance £ from O. Then the potential at P due to dm is

—K?%dm
(€2 + r? — 2rfcos §)1/2

dv =
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and the total potential is

dm
— _K?
V=-K /M (€2 + r? — 2rlcos §)1/?"

(5.9)

Figure 5.5: Potential at an Exterior Point Due to an Irregular Mass

The denominator of the right side of (5.9) may be expanded such that

(€2 +r? —2rlcos b))~} = } 3 (f) P,(sin 6)
n=1

where 6§ = 7/2 — 4.

Therefore the following may be written

V =

2 2 2
/ dm—£/ £sin6dm+£(—/ 2dm
r Jm r2 Im 2r3 Inm

—EF/Mlzsinzédm-f-...

A description of the physical significance of each of the above integrals can be
made. The first integral is the total mass, the second is the first moment about
an axis through O perpendicular to OP and is zero when the origin is chosen as
the center of mass. The third integral is the moment of inertia about the origin,

and the last integral may be written as
/ (6 — & cos? 6)dm = Io — I
M

where I is the moment of inertia about the origin and I is the moment of inertia

about the line OP.
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The potential is then

2Aq Kz
KM _ — (21, - 3I).

V= r 2r8

Now the first term is the potential due to a homogeneous solid sphere. The second
term arises from the departure of the mass M from spherical shape.

With the physical description established, (5.8) may be written as

V=—G—?'I—[1+Jz (?)2(%—gsinzé)+...] (5.10)

Note that only P, and P, remain.

An advantage of (5.10) is that it can immediately be written down once axial
symmetry has been assumed, and any suitable experiment (such as an orbit of a
satellite about the Earth) can be used to determine J, (or Js, Jy, etc.; for general

potential).

E. THE EQUATIONS OF MOTION
Referring again to Figure 5.1, the components of the velocity of a satellite in
the coordinate system are:

U=1v+ Uyt v

or

An expression for the kinetic energy (T) is

dar\* L (ds\'  , L. [de\’
2T—(—‘E) +r (E) + r“cos®é R (5.

The equations of motion may be written using Lagrange’s equation

[
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da(T-V) dT-V)_

& o 34 0 g=rb, or¢ (5.12)

where ¢ = %, T is the kinetic energy and V is the potential energy.

Applying (5.12) to the expression for T (5.11) and V (5.10) results in

d*r ds\* ,  [de\® v
‘—it—z-—r(zt-) — r COos 6(-‘?{) ———a—r' (5.13)
d ,d&) .. ¢\’ 8V
E(r 3 + r*sin 6 cos 6 % = "3 (5.14)
d (2 2.d8) _
5 (r cos 627) =0 (5.15)

The last of these equations gives an integral which can be used to eliminate

time from the system, i.e.,

d - .
r? cos? 62-? = h cos 1.

Let r = p/u then
d k cos tou? sec?s d

(5.16)

dt p? do’

Starting with equation (5.14) and applying (5.16) to the first term results in

d r2d6 _ d (r?h cos® i sec’é) dé
dt \ dt] dt p? de¢’

and continuing to apply (5.16) so that (5.14) finally becomes

d2t<r16+t 5 AV ricos? é
——— +tan b= ———————
d¢? 06 h? cos? 1,
or
d*tan 6 sin 6 cos® &
b= —————(2J 5.17
prs + tan s 1o (2Ju) ( )
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where
3 R?
J = '2' (Jz-ﬁ?)
p=h'/GM.

It is desired to get the left side of (5.17) in terms of the independent variable

8. To begin, the right side of the angle relationship (5.1),
tan 6 = tan 1 sin(¢ — 1),

is substituted into (5.17).
Then using (5.3)
cos§ = cos B sec(d — ),

(56.17) becomes

tan 6 |(1- 2 2—1 Zsecti cosd ()i _tanicosé (Q'¢"— Q"
¢’ cos & é ] & cos & e

. 2 . .
. 7' tan 6 " -
—2sec’itan 6| —| - — - ¢
¢ sin 1 cos ¢ @'

in & cos®é
- S____—’“ws:".s (2J u), (5.18)
e

where primes denote differentiation with respect to 8.

Later, ¢ will be eliminated from (5.18), but first the remaining equation of
motion (5.13) will be rewritten in a form like (5.18).

To rewrite equation (5.13) in a useful form, the independent variable is again

changed by use of (5.16). Multiplying the expression by (¢')? and noting that

dé
26) = é 26—
(tan®é) = 2 tan 6 sec T




results in:

un + u ¢'2COSZ6+

(tané)?]|  u'(tan®é)’ u'¢"
(sect ) sec? § ¢

¢'cost b OV
TR or (5.19)
. 2
Evaluating 4% and multiplying (5.19) by :%:—; (%) results in:
cos?s . 2 1
"' +u = (14 Ju?(1-3sin’6)] + u" |1 - - 5
cos’ 1 (14 Qre2é —4'cosfsinftan 1)
[} 2, 4 é "
- w%zs—ec—— [2 sin § cos é(tan 6)' — ﬁl}
t 6 12 2,
- u {cos2 i sec’ 6 + (—il-l—qzycgs——i - 1} (5.20)

Equations (5.18) and (5.20) are the equations of motion. Before proceeding
to solve these equations, it is necessary to remove ¢. Combining equations (5.1) -

(5.3) results in the following expression:
tan{¢ — Q) = cos ¢ tan 0.

Differentiating this expression with respect to 8 results in

cos 1 1 sin @ cos @ sin 1
"= +0 - 5.21
¢ cos? b cos? é ( )
or
1 cos?é 1 )
— = + (5.22)

o' coci 1+ ﬂ’%".fl—z‘f —~1'sin § cos 6 tan ¢
From (5.2), sin®é = (sin 6 sin )% or
25 _ . . W2
cos*é =1 — (sin 6§ sin 1)*.
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Substitution of this expression plus (5.21) and (5.22) in (5.18) and (5.20)
results in completely generai equations of motion in terms of the dependent vari-

ables: 1,{1,y; and the independent variable 6.

2
i s (4 sin® C o cdi & .2
Gsnnz(“) sin 0_3sm :—!!E,—cosﬂsm 6
cos cos

2
. o di . 8. (dn 2 .
3s5in?i% L0 os2fsin § 6 sin (—“) cos? 8 sin @

dé dé 1

+ ; :
cos 1 cos t
N 3sin’iLi cos?Gsin 0 2 siniE LD gin 4
cos t coSs 1
. 42
di d*Q 24470 iy g
+ 3cost— ——sin § — —48 47—
dé do? €cos t
. 2,
3 sin® (‘;—?) sin 6 o (dN?
+ : +6costsint|{— ] sin @
€oS 1 df
2
. . Q . .2 2 .
B 3 sin (dﬁ) sin 4 + sin g%%s]n é
cos ¢ cos t
2; dn 4% d0 gin 6 dQ
+ 3cost— —sinf— 429" _ 9sini—sin @
do? dé cos ¢ df
d* . 6 sin 1% sinf 3 smsz‘;—?%;—? cos® @
— —sinf — - - -
do? cos 1 cos 1
12 sin?144% o529 dn d*n
+ df df ~3costsint— — cos 8
Cos 1 dg do*
da*n 2 sin? 1% 98 o5 ¢
+ sint——cos § + df df
d? cos ¢
di df) gdidl .ns g dr
+ 12cost— —cos §— —94d 92 cos @
dé db cos ¢ dé

2 cos®1 sin t Ju sin 0
- o (5.23)

and equation (5.20) is:
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d*u 3 sin t(“) &4 sin’(26)
— tu= -
d6? 4 cos?i
3 sin®s d!‘! "{; :,‘,‘ sin® 8 sin(20)
cos?s ’
sin® :%%’—“— 44 5in? § sin(26)
2 cos’i
2 5in® 1% 40 9% o5 ¢ sin 4 sin(26)
cos?t
. . 2 . » . . . .
sin’ 1 (%) u cos 8 sin 6 sin(2z) sin®s (:—;) 2 cos? fsin(2z)
- +
cos?t 2 cos?y
sin®1% 40y cos? @sin(26) = 3 sin { &40 LL5in(20)
-+ -
cos?y cos?y
. di d u _é_QQE 1
sin 155 sin(260)  sin 15,55 95 sin(26)
cos ¢t 2 cos?y
aN N d%u 3.4 .
3sin's (da) esin®d 3 smﬂ%felt;Tﬂd_u inté
cos?y cos?y
H ds dfl du 2 dsdidu
2 sin® Gd“@desme sin d“ﬁ“snﬂ .
cos?i cos?1t
2 sin® i £ LA o5 ¢ 5in g )
cos?y
6 sin*1 (j?) & cos § sin 3¢
cos?{
2 sin°1373jd—€cos 6 sin® 8
cos?y
2 i °6
sin?1 dé % cos 8 sin
cos?t
9 sin® 15—; %‘% j—'; cos? @ sin®é
cos?t
2 )
2 sin®i % gﬁ‘;‘; cos?f sin* sm2 14"y cos? § sin’ @

costq

cos?t




6 sin z(“) ::;‘sm é 28inz i dlu o120

b 35 ds3
cos?g cos ¢
6 sin’ 190 f“? % sin’ 6 smz t‘f“? 44 sin”
cos?y cos ¢
- ds df) du di dldu _:_.2
2 sin®¢ “““sm 0+ 251nz“““sm 0
cos?t cos?s
.di dQ1 du 29 _ d—ag—z——sm (]
sin 1— — — sin 46040746 =
dé do db cos t
di d*:i du Gin?f — sin 4 9 sin’ ¢
do do? d0 cos t
3 cos?i sin®i Ju®sin?f  di?
7o — —usin®f
cos? ¢ dé
sin szgg;‘;‘; ‘;‘9‘ cos® 6 sin
cos?t
2
8 sin®1 (:;) Z‘; cos3 8 sin 6 (j—;) j—‘;cos3 6 sin 0
cos?y cos?1
di\? du 4 sin3 ;’; ‘ggu cos® 8 sin 6
— | —cos®@ sin 0+ »
dd ] do cos?i
2 .
2 sin 13—2‘;—0?‘:—: cos @ sin §
cos?y
6 sin’1 (‘;‘;) 3‘; cos 8 sin @
cos?1
2 sin ’:eﬁ ‘fg ‘;‘; cos 8 sin @
cos?y{
d* dY du g 0
sin t—- — — cos § sin
df? df db
2 sin 1‘;? d';‘ cos 6 sin 6 sm 1;‘9; ‘;‘@‘ cos @ sin 6
cos 1 coS t

2
2 sin®i (%) % cos 4 sin § '\ d
(dé) df (ﬂ) a—u cos 8 sin 6
&

cos?y db
di d0 2 sin & g sin 6
4 sin 'E ¥k cos 0 sin § — sin 1‘“50:(':5 S




dn ‘
+ smstz‘;‘}z:cos‘a 3 sin* 1(“) u cos*d
cos?q cos? s
N sin’s "'I, .mu d["! cos’d 6sint “‘[! “!“! "!“ cos? @
cos?s cos?s
s edidu a2
5 ﬂi{}d_u z0__351n:d““co¢-:0
+ sin -
dé do d0 cos ¢t
2 2
2 . an\?d
3 sin?s dan 0 2 sin’ 14}y cos? 3(;;) YTl
— 3sin’t| — | ucos - - -
do COS ¢ cos?y
240 &’ 3_nd=__u 40 du
4+ Zaeder _ Cae aa do 62 _do
cos ¢ cos? Cos ¢
di dfl du . +di du
3 25‘“’404049_- ,ﬂﬁiﬂdﬁ sin t3; %,
cos?t dé df de cos 1
cos?iJu? cos?:
os? L (5.24)
o cos? 1

Equations (5.23) and (5.24) can

be greatly simplified if only a first order

approximation to the equations of motion is desired. The approximate equations

to (5.23) and (5.24) are respectively:

d* 2 dr
~2sint—sin § - —-sm0+sm t—— cos § — 2—c050
do d6? do? dé
2 cos®isin ¢ J u sin 8 (5.25)
= - .40
cos? i,
2 didy
d*u b= _sin 15y 4 5in(26)
d6? cos t
.2 .
_ 2sin 1‘;—?37 sin’ 6 smzz‘;@? :‘; sin®# sm 1::, ‘;‘; sin’ @
cos ¢ cos?t cos 1
3 cos?isin®iJu?sin®8 2 sin’i ‘;n ‘;: cos 0 sin 6
cos?y cos 1
-d*i du 0 - dy 6 si
sin 193 92 cos 0 sin 6 2 sin 15u cos 0 sin 0
cos 1 Cos 1



in ¢95du 2 102 040 2
3 3smta“cosﬂ 2 sin" 1%, u cos* f
cos t cos §
2 . o ds .
N 2%%+%¥1‘;+5m 1£%  cos?iJ u?
cos t cos ¢ cos ¢ cos g
2-
cos? ¢
bl (5.26)
cos? g

Equations (5.25) and (5.26) will be used in the initial analysis; the general

equations will be used for second order calculations.

F. THE INITIAL CONDITIONS

It is desired that the solution to the equations derived in the last section
be an accurate, long term predictor of the satellite’s motion. In fact, as long as
the oblateness perturbation remains the dominant disturbing force, the solution
should be valid for close to 1000 revolutions. However, before the solution can be
used for prediction, a set of initial conditions must be determined.

The subject of orbit determination represents a separate discipline within
celestial mechanics, and a discussion of the various techniques used to determine
an orbit is outside the scope of this analysis. It is sufficient therefore, to state that
the purpose of orbit determination is to find the orbital elements of a satellite from
reduced observational data. A set of observations will determine the osculating
elements at time t;,. As was noted in Chapter 4, these elements will change, and
at ¢; a new set of osculating elements may be calculated. For the purpose of this
analysis any observed set may be designated as the osculating elements at ¢, and
thus prescribe the initial conditions. Stated ruathematically, the initial conditions

are at t = t5:

. a(1 — €?) dr _ a(l1 - e?)esin(fo — w)
1+ ecos{f; - w) dd ~  (1+ecos(fp — w)?
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where a = ag, € = ¢y, w = wy,

and 1 = ¢, N

1l

o y=0—w (5.27)
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VI. THE PERTURBATION PROCEDURE

A. PRELIMINARIES

The perturbation method used in this analysis is a variation of tne technique
known as the Method of Strained Coordinates. The motivation for the use of this
technique is the subject of this section.

In perturbation theory, the quantities to be expanded can be functions of one
or more variables besides the perturbation coordinate. An asymptotic expansion
of f(8;J) in terms of the asymptotic sequence €, (J) is,

f(6;J) ~ i am(0)em(J) as J—0 (6.1)

m=0
where 6 is a scalar (or vector) variable independent of J and the coefficients a,,

are functions of & only. This expansion is said to be uniformly valid if,

n-1

70:0) = Y an(®)en(J) + Ralt; J)

m=0

Rnw; ']) = O(en(‘]))

For these uniformity conditions to hold, @, (8)¢n(J) must be small compared to the
preceding term am,_1(0)€m-1(J) for each m. Each term must be a small correction
to the preceding term regardiess of the value of 6.

Unfortunately, it is the rule rather than the exception that expansions like
(6.1) are non-uniformly valid and break down in certain cases. A case of particular
interest is the presence of secular terms such as 6" cos § and 6" sin 6 which make
fm(8)/ fm-1(6) unbounded as § approaches infinity.

To illustrate how secular terms arise in the solutions to differential equations,

reference is made to one of the equations of motion derived in the preceding
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chapter. Equation (5.26) has the form,
ull _+_ u = 1 + J f(u,u', ull, "I’ "Il,nl’ nll) .

When expanded, the right side will be linear combinations of trigonometric terms
and constants. The presence of terms of the form cos(f), sin(6), cos(3y — 26),
sin(2y — 6), etc., on the right side will produce secular terms. For example, the

second order differential equation,
"
u +u=cos §

has the solution,

_0sin 6 +cos @
- 2

u + K, sin 8 + K,cos 0.

Note that the presence of the term 6 sin 6 will result in unbounded solutions for
u as § approaches infinity. Since in this representation u is the reciprocal of
the distance from the center of the planet to the satellite, the physical effect of
the secular terms would be to produce in r periodic terms with large amplitude
variations, a situation that certainly does not correspond to physical reality.

A technique for dealing with terms that produce secular terms is to eliminate
them from the right side of the differential equation. The Method of Strained
Coordinates is a perturbation technique designed for removing secular terms. To

illustrate, it is recalled that the solution to the two body problem is
1/r=u=1+ecos(f —w), where p= 1.

In the Method of Strained Coordinates, the 8 coordinate is strained by introducing
a new variabley = f(6) = 6§ —w + Jy,8+ ... As will be shown in the next section,
choosing the correct value for y; will insure secular terms do not arise in the first

order solution for u.




While the above method removes secular terms to first order, it is not ade-
quate for dealing with secular terms that arise to second order in the equations of
motion. That it is important to remove second order secular terms is shown by

the following equation:

J{r) = 1+4+ecos(f—w)+ J(cos 6+...)

+ J¥Bcos(f—w)+...)+T30%cos(f—w)+...)+...

Note that, although the terms through order J are bounded, as 8§ — oo, the J*?
and J* terms grow without bound and dominate the right side. In this present
analysis, § has an upper bound of (27)10%; however, the effect of secular terms
remains since J26, J36?, etc., are all of order J as § — (27)10%. An infinite series
would have to be retained.

In this present work, three additional techniques had to be devised to deal
with secular terms to second order. These techniques will be discussed in the next
section. The perturbation method therefore is not strictly the Method of Strained
Coordinates, but a variation of that method.

The basic steps in the perturbation procedure are as follows:

1. The dependent variables and independent variables are expanded as func-
tions of a small parameter (J).

2. The variables are then substituted into the equations of motion, and the

equations are solved consecutively. Each solution yields a more exact ex-
pression for the appropriate variable.

The process is carried out through second order to demonstrate that all secular
terms may be eliminated and that the solutions are bounded. The following sec-
tion highlights the calculations involved in the process and shows the first order

equations and solutions. The second order expressions are long, and their display
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in this context would not contribute to tne analysis since only a few specific terms
are relevant. The complete expressions are contained in Appendix B; they will be

referred to during the course of the analysis.

C. SOLVING THE EQUATIONS
1. First Order Approximation for + and 0
The equations to be solved are (5.25) a.d (5.26). Since the right side
of these equations are analytic functions of J, it is reasonable to expect that the
solution to u will be arbitrarily close to the two-body solution, 1 + e cos(f — w),
when J is sufficiently close to 0. Likewise ¢, 2, and y will be arbitrarily close to

10, §)o, and 8 — w, respectively, when J is close to 0. This assumption amounts to

letting
u = l+ecosy+Ju +Juy+... (5.2)
y = 0—w+Jy +Jy +... (5.3)
1= o+ Ji +JYH,+ ... (5.4
Q= Q+J +J 0+ ... (5.5)

The first step in the solution of the equations of motion is to substitute

(6.2) - (6.5) into equation (5.25) and equate the coefficients of J. The result is
—20, sin 8 + QY cos 8)sin 15 — 24, cos § — ¢! sin 6
1 1 1 1
= 2 cos igsin 1psin 6(1 + e cos y) . (5.6)

Sin ¢ and cos t have been replaced in the above equations by their approximations:
sin 15 and cos 15. These are valid approximations since ", ', ¢", and ¢' are all of

order J.
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Equation (6.6) is a linear differential equation with two unknown func-
tions. Terms of the form cos 8, sin 8, etc., on the right side of this equation, and
the more general equation (5.23), will produce secular terms in ¢ and 0. It should
be recalled that these same terms cause secular terms in u. Note that (6.6) con-
tains a sin  terms on the right side. There would be a need to eliminate this
term were it not for the conditionc placed on 1 and ¢ by the definition of the
reference plane. Specifically, {1, which governs the rotation of the reference plane,
must be expressible as an unbounded (secular) term plus bounded periodic terms,
and ¢ must be bounded. The fact that f must contain a secular term negates the

requirement to eliminate the sin 8 term. Therefore, a solution of the form

o, o180 + azsin y

1y, = picosy (5.7)

is assumed.
By substituting (6.7) into (6.6) and equating coefficients, the following

solution for 1 and (1 is obtained:
17, = —2/3e€cos iysiniccos y
1, = —fcosiy—4/3ecosigsiny (5.8)

2. Second Order Secular Terms in 1 and 0
Equation (6.8) satisfies (6.6) to order J. The next step in the process
is to substitute (6.2) - (6.5) and (6.8) into (5.26) and solve for u;. However,
proceeding with (6.8) in its present form will lead to secular terms in second
order. A brief paragraph will explain why secular terms are anticipated.
Success in using perturbation methods requires a certain a priori knowl-

cdge about the nature of the particular problem one is trying to solve. There is a
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certain amount of trial and error involved in the process. For instance, the success
of the Method of Strained Coordinates depends on the knowledge that a secular
term will arise in the first order solution to (5.26) and that a mechanism (the
strained coordinate) can be put in place one step ahead in order to eliminate the
secular term. The second order secular terms were found by this same trial and
€ITOr process.

Returning now to equation (6.8). it was discovered in this analysis that

the problem terms
(—45s° + 28s)
24

Je?c sin(2y — 6) (6.9)
and

5,282

gJ s”e‘c sin(2y — 36)

(where s =sin 15, ¢ = cos 1p).
appear on the right side of {5.23) when it is expressed to order J%. The appearance
of these terms that give rise to secular terms was unexpected. They were not
reported by Brenner because the authors assumed a small eccentricity and dropped
J2e? and higher terms.
There were several failed attempts in dealing with these new terms be-

fore an effective measure was discovered. First, an investigation was made into

the effect of retaining the secular terms.

The secular terms produced by (6.9) are:

: 15s° — 14 _
1, = (—szg—f—)ezc 6 sin(2y — 26)
1557 — 7
N, = i—st——)ezc 6 cos(2y — 24).

As was demonstrated earlier, when 6 — (27)10° these terms are of order J and

must be retained in the first order solution. As the solution progresses, these terms
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will continue to produce secular terms with coefficients J36%, J4¢%, ..., J"""!. A
convergent series representation for these terms was not found.

The remaining alternative was to alter the form of (6.7) to eliminate
secular terms. If terms with arbitrary coefficients can be found which when added
to (6.7) produce terms of identical harmonics to the same order as (6.9), the co-
efficients may be chosen so that all terms with these harmonics are eliminated.
Essentially, the only terms that may be added to (6.7) are terms which satisfy the
original differential equation, equation (5.23). Therefore, one may add homoge-
neous solutions of the differential equation or arbitrary constants.

Adding an arbitrary constant to (6.7) has the following effect on higher
order terms. From equations (5.23) and (5.24), it would appear that only the
derivatives of 1 and ] enter into the higher order calculations, and therefore arbi-

trary constants would be eliminated. This is true for {2, but not for 1. To explain,

for the first order approximation of ¢; and 1,. This approximation was valid since
all terms were of order J. However, in the calculation for u; there is a term
cos?1/cos? iy that is of order 1 (Eq. (5.26)), therefore a better approximation for
¢ is required. Using (6.7) and the Taylor series expansion for cos ¢ (keeping only

terms of order J) results in
cos i = cos(ig+ f(J)) = cos 15 — sin o f(J)
= cos 1y — sin 1p(1))
Adding an arbitrary constant K, to (6.8) results in
cos 1 = cos ig + sin 14(2/3 J e cos tpsin fgcos y + K,)
(A similar expression is required for sin 1)

61




Therefore, a constant added to (6.8) will alter the form of subsequent
terms, but not in the form required to eliminate secular terms in 1, and 1,. It will
be shown that a constant like K, will produce a term of the form K,J sin’1o in u;

240c0s 1p8in y

and terms of the form K,J?e sin®1ycos i5cos y in i3, and K,J?%e sin
in 1;. Although they cannot be used to eliminate secular terms, the constants
will be needed to satisfy the initial condition, therefore it is essential that they do
not produce irremovable secular terms to higher order.

The next alternative for the elimination of secular terms is to add a
solution to the homogeneous equation of (5.23). While it will be shown that this
technique is successful in eliminating secular terms in u,, it did not succeed in
removing them in ¢, and Q;. It failed because the homogeneous terms produced
new secular terms to higher order. Many various combinations of homogeneous
solutions were added to (6.7), but all attempts along this line only complicated
the problem.

An answer to the question of how to eliminate the secular terms was
suggested in a report by Weisfield [Ref. 31] on polar orbits. When faced with the
problem of eliminating secular terms from his equation for A?, Weisfield added a

term like cos(2y — 20). Now to the particular order to which one is working this

term acts like a constant in the derivative, e.g., let,
y=6+J6

then

%(cos(?y - 20)) =sin(2y — 20)(2 - 2(1 + J)) = O(J).
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The attempt was then made to apply Weisfield’s technique to this more

general problem. (6.7) would then become
iy = —2/3ecos fpsin tgcos y + K cos(2y — 26) + K,

0y = 0 cosip—4/3ecos 1psin y + Kysin(2y — 26) + K, . (6.10)
where: K; = —Kjeles K; = K;cos(2w) + K,

Ky = —Kse’c K, = —Kssin(2w) + K,
(It is noted that (6.10) still satisfies (6.6) to order J)

The added harmonic terms produce identical harmonics as (6.9) to sec-
ond order and no other new secular terms. Thus, they allow for the elimination
of these problem terms.

3. First Order Approximation for u

With valid expressions for ¢; and {1; established, the procedure may now

be continued with the calculation of u,. Substitution of (6.2) - (6.5) and (6.10)

into (5.26) and letting sin ¢, = s and cos iy = ¢ results in the following equation

d*u 5e2s? cos(2y + 26
7071—“11 = 2ecosyy + 8( )

*s® cos(2y — 26
+escos(y )

+ 2¢*K,s*cos(2y — 26)

5es?cos(y + 260)  11le?s? cos(2y) . 5e? cos(2y)

3 4 2
3e?s?cos(26)  s®cos(26)
_+.

4 2
17e2s?  5s*  Te?

_ L Ly et
12 ;T T (611

— 5es’cos y +4ecos y+

- 2¢*K 5% cos(w) — 2K,s? —

In the above equation, the cos y terms will produce secular terms in u;. A choice

of y, = (587 — 4)/2 will eliminate that possibility. y becomes

5
:0—w+J0<532—2> + Jy.6.
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Equation (6.11) becomes

d*u, 5e?s?(2y + 26) 2cr 2
g tw = T + 2¢*K; s cos(2y — 26)
e?s?cos(2y — 20) = 5es®cos(y+26) 1le?s? cos(2y)
+ + -
8 3 4
5e?cos(2y) = 3e’s?cos(20)  &%cos(26)
2 + 4 + 2

17¢*s?  5s*  Te?
- —_ 4+ — +1. 6.12
12 2 + 6 + ( )

— 2’ K, s cos(2w) — 2K,s* —
To solve (6.12), a solution of the form

u; = ocos(2y + 26) + azcos(2y — 260) + aszcos(y + 28) + a4 cos(2y)

as cos(28) + oo (6.13)

is assumed.
Equation (6.13) is substituted into (6.12) and the coefficients of like harmonics are
equated. The coeflicients are:

—e?s?

24

a =

1
a; = <2K1 + §> els?

—5es?
Qa =
’ 24
11 5\ ,
ap = |— —-e
12 6
+3)
a5 = —[-+-
4 6
17¢? 5
2.2 2 ‘ 2
= - 2.) — 2Kps? — | — + =
ag 2K, e’s* cos(2w) 28 ( TE 2)5
4-132—0-1
6
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Equating (6.13) for u; results in:

152 2y + 26
u, = &8 cos2(4y + 26) + 2¢’K 5% cos(2y — 26)
e’s? cos(2y — 26)  5es’ cos(y + 26) + 11e?s? cos(2y)
8 24 12
5e? cos(2 ’s®cos(260) &*
_ Se’cos(2y)  es’cos(26)  ® cos(26) _ 267K, 5 cos(2w)
6 4 6
17¢?s* 55 7¢?
- 2K,s’ - - —+—+1 6.14
" 2 Te ! (6:14)

4. Second Order Secular Terms in u
The above expression for u; is not complete. Looking one step ahead
it is known (by trial and error) that the following problem terms arise in the

differential equation for u,.

d?u, 75€3s 2006882 + 136¢° el
agr T ( T 15(55% - 4) cos(3y — 26)
375¢3s* + (—480e® — 40¢)s? + 136¢° 3
N e’s* + (—480e e)s? + 136¢ € cos(y — 26)
240 T 15(557 — 4)
= (2e — 225€%s? + 2¢%) cos(2w) . 2¢® cos(2w)
Y2 60 7557 — 60
(45€® — 550¢e)s* + (366> < 488¢)s? — 56¢°

- 18 ) cos(y) (6.15)

(Only the problem terms are displayed. The complete expression is equation (B.5),
App. B))

The harmonics cos(3y — 26), cos(y — 20), and cos y all cause secular
terms in uq, and therefore must be eliminated. In addition there is another more
troubling problem with (6.15). That is, certain terms have in their denominator

-1

(5sin®1; — 4). and if 1, = =sin 4/5, then the denominators are zero. This in-
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clination is well known in Astrodynamics, and has been named the critical inclina-
tion, or more appropriately the critical inclinations since there are two: 1, = 63°26'
and 117°34'. The problem of the critical inclination will be dealt with later in the
analysis. In addition, there is qualitative discussion of the critical inclination in
Appendix C.

The task is to eliminate the three terms which give rise to secular terms
in u, from the right side of (6.15). By inspection it is seen that a proper choice of
y2 will eliminate secular terms produced by cos y. It was then discovered in this
analysis that the addition of a term of the form cos(y —26) —cos(y +2w) eliminated
the cos(y — 26) problem term. This term may be added since it is a solution to
the homogeneous equation. There remained one term to eliminate; cos(3y — 26).
This term can be eliminated by adding a term with the harmonic sin(2y — 26) to
v1- In addition, a constant was added to y; to satisfy the initial conditions. The

complete first order expression for y is now
. 5, _ _
y = 6—w+J 6(53 —2) + Kssin(2y — 26) + K,

where K5 = —JKsand Ks = —J Kssin(2w) + K.
By adding — K7(cos(y —26) +cos(y+2w)) to eliminate a secular term and K; cos y
+ Ky sin y to satisfy initial conditions, u; becomes

e?s? cos(2y + 26)

u = 21 + 2¢°K,s? cos(2y — 28)
2s? — ? + 26
L s cos(2y — 28)  5es® cos(y ) e Ky cos(y — 26)
8 24
11e%s? cos(2 5e? cos(2
+ eKjcos(y + 2w) + °° lczos( y) _ e C(:( y) + Kgsin(y)
5% cos(26 % cos(26
+ Kpcos(y) — £e c;)s( ) _ ¢ co;( ) _ 2e’ K, s? cos(2w)
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17¢*s? 552 7e?
ALY (6.17)

— 2 —
2Kys 12 2 776

5. Second Order Solution for + and 0
With all terms in place to deal with secular terms the calculations are
continued by substituting (6.2) - (6.5), (6.10), (6.16), and (6.17) into (5.23) to solve
for f1; and 13, and to evaluate the constants K; and Ks. The result is contained

in Appendix B, i.e.,

(—201; sin 6 + 017 cos ) sin ¢5 — 215 cos 8 — 15 sin 6

= Right side (B.1), (Appendix B).

An inspection of (B.1) reveals that the coefficients of sin(2y — 8) and sin(2y — 36)

form respectively the following simultaneous equations:

(5K3 + 10K, — 45)e*s3c (4K3 + 4K, — T)e*sc

24 6

(g - 5K3) e’s®c + (4K, - 4K3)e*’sc=0.

Solving these equations results in

15s* — 14
K = ———— 6.18
! 24(55? — 4) (6.18)
75s* — 120s% + 56
K; = . 6.19
3 24(5s% — 4)? ( )

Substitution of these values for K; and Kj; into (B.1) gets rid of all sin(y — 26)
and sin(2y — 30) terms. With an assurance that no secular terms will arise, the
equation for {1, and 1, can be solved.

Before progressing, it is noted that (6.18) and (6.19) contain the same
problem denominator that was observed in (6.15). In fact, (6.18) and (6.19) are

the first occurrence of the critical inclination term in this analysis. The term then
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continues to manifest itself in all higher order analyses. The reason for the presence
of the term is simple to explain. The constants K; and K were multiplied by the

derivative of y; (5}; = (5.52 - 2)) during the analysis. The derivative then shows

2
up in the denominator of these constants when they are evaluated. It will be
important to show later in the results that despite the occurrence of an apparent
singularity, the final solution is uniformly valid for all inclinations, including the
critical.

With secular terms removed the following equation can be solved for 1,

and ¢,.
(—20% sin 8 + 0} cos ) sin i5 — 215 cos § — 15 sin § (6.20)
= Right side (B.2), (Appendix B.).
As was done in (6.6), a solution which includes the harmonics of the right side of
(B.2) is assumed for 2, and ;. This solution is substituted into (B.2), and the
coefficients of the various harmonics are equated. Once again the conditions are

that f1; must be expressed as a secular term and bounded periodic terms, while

1, must be bounded. The solution is

1, = Rightside (B.3)
t2 = Rightside (B.4). (6.21)

6. Eliminating the Final Secular Terms
To complete the solution the remaining constants must be found. Three
of the remaining six constants, y;, K5 and K-, are obtained from the differential
equation for u,. It is recalled that these constants are used to eliminate secular
terms in uz. There is no need to solve the equation for u, since the constants may

be evaluated from the right side of the differential equation. Therefore, (6.2) -

68




(6.5), (6.10}, (6.16), (6.17), and (6.21) are substituted into {5.24). The resuiting
equation is (B.5).

As in the previous solution for 1; and 1,, the secular terms in u; arc
eliminated by setting the coefficients of the problem terms, i.e., (6.17), equal to

zero and solving for the constants. The results are:

75255 — 260e%s* + 296¢%s? — 112¢2

K; = 3
102 (§s2 - 2)
15e%s4 — (14e? — 2)s?
Ki = - 5
48 (8s* - 2)
e? cos(2w)
Yy = ————< + (6.22)
30 ($s2 — 2)
where
26es’ —0p)  15€*s* cos(2:
G2 = —10es*cos(w — 0) + es’cos(w — fp)  15¢’s* cos(2w)
3 8
15e?s? cos(2w) e’cos(2w) = 15e%s*  275s*  3e?s?  61s?
+ - + - + +
8 60 32 48 8 12
7e?
12

With the above constants evaluated, it is assured that the second order expression
is free of secular terms.
7. The Initial Conditions for y, 1, 6, N
The task now is to evaluate the remaining constants by establishing the
initial conditions. Att = ty, it is required that the velocity vector of the satellite in
the reference plane be tangent to the corresponding two body ellipse determined
by the satellite. In addition to the initial conditions established for r and % ir

dé

(5.27). it is recalled that at t = t;
y=20,-w. 1= 1, and N=10
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From (6.16) and (6.22):
52
y = 0—w+J(0(-2-s —2)
(75€%s® — 260e?s* + 296e*s? — 112¢?)
192 (857 — 2)°

(sin(2y — 26) — sin(2w)))

¢?J %8 cos(2w)

B % (25 - 2)

+ J%0 g,. (6.23)
Choose K¢ such that at t = ¢35, y = 6y — w; therefore,
Ke=—Jb, (-;-s’ - 2) : (6.24)
To obtain the initial condition for ¢, use (6.10) and (6.18) so that

(15s* — 14)(cos(2y — 26) — cos(2w))
24(5s? — 4)

i =1,—2/3Jecs cos y — Je’cs + K,. (6.25)

It is evident that the Je? terms are eliminated when y = § — w and 6 = 6,. The
result

K, = 2/3Jecs cos(by — w) (6.26)

gives the desired t = ¢ at t = ;.
For (1, (6.10) and (6.19) are required. In addition all secular tern's from
12, equation (B.3), App. B, are needed since all these terms are of order J.

Therefore,

ce?J (758 - 102s% + 56)(sin(2y — 26) + sin(2w))

1 = 0y—Jlc~+

24(55% — 4)?
4ceJ siny ce’J?cos{2w)f  5ce?J?s?cos(2w)f
3 1552 — 12 8
ce’J* cos(2.)6 . 5ce2J2%s%0  5cJ?s%6
- cos(2) ~5ci?K,s%0 — + —

12 24 3

2y cJ%g
AL A V) (6.27)
6 2
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and
Ko = Jeb + §Jcc sin(fo — w) . (6.28)

8. 6 As a Function of Time. (Initial Conditions for r, %

To complete the evaluation of the remaining constants in u, it is nec-
essary to give # as a function of time. The expression for the perturbed % then
can be related to the well-known two-body formula, and from this relationship, an
expression for r and 3—; may be derived. The task will be to choose Kz and K s0
the corditions as given by (5.27) are satisfied, i.e.,

_ a(l — €?) gl(to) _ a(l — e?)e sin(f; — w)
1+ e cos(fy — w) dé (1 + € cos(y — w))?

r(to)

Proceeding in this manner, the formula for % can be obtained from the

relation
dat _d¢ dt idﬁr’cos’&
d8  df do = db h cos i,

Direct substitution of the derived expression for 2t equation (5.21 , results in
P 26 €4

N 1+ e* cos(2y — 26) — e cos(2w) N e?s? cos(2y — 26)
d ~ k| 15(55% — 4) 8
e?cos(2y — 20)  es’cos(y +26) es?cos(y — 26)
60 6 2
| 4es’cosy decosy s7cos(26)  2es’cos(w — ;)
' 3 3 2 3
_ e’s?cos(2w) . e? cos(2w) . st 1 (6.29)
8 60
At t = to
dt :




The above condition is an integral from the two-body problem. If (6.29) is evalu-
ated at § = 4, then % may be expressed as

Ki) = ©
(1+J xo)—z

> %

where

es?cos(w +6p) | 2es’cos(w — 6p) e cos(w — 6;)
2 + 3 B 2

es? cos(w — 30y) 5% cos(26,) 48

- - - -1

6 2 2

Ky = -

From this expression, a formula for h results:
h = h(1+ JK)

so that from (6.29)

dt r?
oL -K
T h(1+J( 10t-...))
Using
h? h?
f) = W = m(l + 2JK10) = a(l - 62)(1 + 2JK10)

a new formula for r, which includes the first order perturbation effects, may be

written as

P_ ot - ¢) (6.30)
v l+ecosy+ J(—2K)o + uy)

).

r —

where u, is (6.17

dr

The formula for £ is
dr_ a(l-eesiny
dd ~  (1+ecosy)?
2.2 ‘ 5es? si + 26
. Jafe? — 1) [e*s®sin(2y + 26) L SesTsin(y +20) eK;sin(y — 26)
(1~ ¢ cos y)? 6 ;




11e?s?sin(2y) 5e’sin(2y) 5es?sin(y)
+ -—
6 3 2
e?s?sin(20) s?sin(26)
2 * 3

— eKysin(y + 2w) —

— Kgsiny+2esiny+ Kgcos y +

(6.31)

Next, evaluate (6.30) and (6.31) at § = 6,. Keep only the terms to order J. The

result is two simultaneous equations that can be solved for Kz and Kj:

e?s?cos(3w — 6p)  11le*s? cos(3w — 36,)

K = 16 24
_ 5e’cos(3w — 36,)  e’s?cos(3w —56p)  3les®cos(2w — 26,)
12 16 12
_ Tecos(2w —26,) 3escos(2w —48p)  1le’s® cos(w + 6p)
3 8 16
3 s?cos(w + 65) . 11e*s? cos(w — 6y)  7s?cos(w — 6)
4 8 2
_ 31€ coi(zw ~6) 3cos(w — 8) — 17¢€%s? co458(w — 36,)
2 e (s — 2 y 2 2
s cos(l.;Z 360) es cc;s(?.y) _ 5es c:s(200) . lfic;s B ’_735 (6.32)
K. = e’s’sin(3< — 6;)  11e*s?sin(3w — 36) N 5e?(3w ~ 36;)
7 16 24 12
_ €e’s’sin(3w — 56;)  3les®sin(2w — 26,) |, Tesin(2w — 26;)
16 12 | 3
_ 3es’sin(2w —48c)  Te’s?sin(w +6;)  s’sin(w + 6o)
8 16 4
_ 67e2s? sin(w — 6;) B 7s% sin(w — o) N 29¢e?sin(w — 60)
24 2 ‘ 12
- 3sin(e—6) 11e’s?sin(w — 36;)  7s”sin(w — 36,)
48 12
_es’sin(2.)  3es’sin(26c) | (6.33)

2 4
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Substitution of the values of K3 and Kj in the equation for u insures

that the remaining initial conditions for r and :—; are satisfied.

C. THE RESULTS
1. Preliminaries
It was noted that throughout the calculations in this chapter the term
w appeared in the denominator of terms in u;, t;, 13, and u;. It would
appear that the solution is not valid when 1, = £sin™?{/4/5. And if the solution
is not valid near these “critical inclinations”™, then one should question the validity
of the underlying perturbation process.
The purpose of this last section is to display the final solutions for y, 1,
(1, and u, and to show that each of the apparent singularities can be eliminated
in the limit as as ¢, approaches +sin™} \/4/_5 It is a remarkable aspect of this
analysis that every term that appears to cause a solution to blow up is exactly
canceled by a corresponding term that is “hidden” in ihe solution.
2. First Order Solution for y

By use of trigonometric identities, (6.23) may be rewritten as

y = 0—w+J0<-;—sz-—2>

,(755° — 260s* + 29652 — 112)

5 /5 . AN
- Je cos <2w—J0 <—52—2>)sin (JB -s‘—2
96(%82—2)2 2 k? ))
1J%g 2w 5
_ e Sbcos(2) gy (—52 - 2) + J%0g, + O(J2, 7%, +...). (6.34)
30 (£s? — 2) 2

Equation (6.34) is the complete first order solution for y. If the initial

inclination is such that |2s? — 2 < 1073, then (6.34) should be replaced by its




limit:

e?J3sin(2w)6? + 8eJ? cos(w —~ 6,)8 + 17¢J? cos(2w)d

= 6-
y W+ 15 15 60
+ 82J20+?—J2—0+0(J’ J%, J‘O’( —2)+ )
= - s Ry

3. First Order Solution for s

As was done with the expression for y, 1 is rewritten as:

t = o+ Jecs (§c[cos(00 — w) —cos y]

€*(15s? — 14) sin [Zw - Jé (gs2 - 2)] sin [J0 (gs2 - 2)]\
- 24 (857 - 2) J
+ OUJP+J%0+J% +..). (6.35)

Again, as in y, should i, be near the critical inclinations, |2s?—2! < 1073,

then (6.35) should be replaced by:

. . 4Je J?8e? sin 2w
i = 1+ l—s[cos(ﬁo - w) —cos(f — w)] + 30

+ 0 (ﬂ,ﬁe 738 <2sm 10—2) ) .

4. First Order Solution for Q1

Rewriting (6.27) for 2 results in

N = Qo-J&C

7554 — 1205 + 56)
48 (157 - 2)

s a9 32 2 o (5 (325}
(

4ceJ siny  celJ?cos(2w)d 5ce2J252cos 2w)6

!
—_ - - =

3 158 — 12

- rezJ(
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22 2722 2,2
_ cetJ?cos(2w)d + 5cT K820 5ce?J?s%0 + S5cJ?s%0

12 24 3
ce?J?§ cJ%6

-~ e T3 + K+ O(J2,J%0,J4% + ..) (6.36)

where
2
K, = chcs cos(fp — w)

K, = Jebo+ %Jcc sin(fp — w) .

If |3s% — 2| < 1073, then

4ceJ sin(f — w) N ce?J3sin(2w)6? + 5ce?J? cos(2w)8
3 6 12

ce?J¥  11cJ%6

+ 4cJ?K,0 — 3 + 5 + K,

S
+ O(J2+J30+J‘03 (552—2)+...)

ﬂ = QO-JHC—

where

K, = —:—,Je cos(fy — w)

o

\/1/5 Jb + %\/1/5 Je sin(()o —w).

5. First Order Solution for u

K

i

The complete first order solution for u is:

e*J s* cos(2y — 26)

1 + ecosy~— >4 + 2e%J K, 5% cos(2y — 26)
N e’Js’ cos(2y — 20)  5eJs’cos(y + 26) . 11e’Js? cos(2y) eJ Ky cos(y - 20)
8 24 12
5¢2J cos(2y) e*Js’cos(28)  Js®cos(26)

+~ eJKqcos(y +2w) —

6 4 6
- JKgsin{w - 6) ~ JKgcos(w — 6;) — 2e*J Ky s? cos(2u) — 2.7 K, &?

17e2Js° 5J<* Te?J
12 2 6

~J - 0(J% (6.37)
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15s% — 14
K, = s‘=1
48 (252 - 2)
K, = 2ecscos(fy —w)
52
y = 0—w+J0(§s -—2)
7558 — 260s* 2_ 112 5
_ gl 20 e ) cos <2w ~J6 (gs2 - 2)) sin (Jo (Es’ - 2))
48 (582 - 2)
5
—  e2J% cos(2w) + J 8o (—2-32 - 2) + J?8g, (see equation 6.22 for §,)
—15es* — (14¢€? — 2)s?
K, = :
48 (582 - 2)
Ky —— Equation (6.32)
Ky —~ Equation (6.33)
Applying the condition [2s? — 2| < 1073, the expression for u is
) e?J cos(46 —2w)  e'J cos(2w) eJ cos(30 — w)
u = — —_—
30 MY 6
*J cos(26 —
-l °°S§O “) L TRy sin(8 — w) + J K cos(8 — )
273610 (9,192 2 -
+ e cos (e J?sin(2w)8 N 8eJ % cos(w — 6o)0
15 15

17e?J%cos(2w)8  e*J*6 2J%6
+ + +6-w
60 60 5

e(8e* —8)J* sin(f +w) €’J cos(26)  2J cos(26)

120 5 15
272 gin (2w 2
_ 2 Tsin(aw)0 8JK, T, (ﬂ,ﬂa,ﬁa? <§32 - 2) + ) .
15 5 30 2
Where Kz and K are now:
e‘cos(3uw — 6;) e?cos(3w — 36;)  e*cos(3w — 56)

Ke = — - —~
8 20 20 20

e
i1




4e cos(2w — 26,)  3e cos(2w — 46p)  11e® cos(w + )

15 10 20
_ cos(w+86,) 89e®cos(w — o)  cos(w — bo)
5 60 5

17e? cos(w — 36y) 7 cos{w — 36p)  2¢ cos(2w)
- 60 - 15 - 5 — e cos(26,)

22e
- —+0(J?

15 +0(J%)

e?sin(3w — 6;) N e?sin(3w — 36;) + e?sin(3w — 56,)

Ko = 20 20 20
. 4e sin(2w — 26,) N 3e sin(2w — 46,)  7Te’sin(w + o)
15 10 20
, sin(w+6o) 1le?sin(w — o)  sin(w — 6o) 11e?sin(w — 36;)
‘ 5 60 5 60
N 7 sin(ule_——_30_o) N 2e six;(Zw) _ 3e sir;(Z@o) oY)

The results obtained thus far may be used to predict the orbit of a satel-
lite for up to 1000 revolutions when a valid set of initial conditions are provided.
The initial conditions will usually be given as the initial displacement vector r
and the initial velocity v, whereas the solution obtained is in terms of the orbital
elements. It is important to show that the coordinates and velocity components
can be easily recovered from the orbital elements. Indeed, Reference 4 contains
the criticism that Brenner and Latta did not chow how r and v would be ob-
tained. and that “the derived elements are not such that the velocity components
are readily obtainable.” {Arsenault et al., Ref. 4: Vol. 2, p. 5).

Again referring back to Figure 5.4 and equations (5.1) - (5.3). the po-
sition of the satellite in the coordinate system may be derived from its direction

cosines:

r = rcosécosoi~rcosésinoj—rsinék

-1
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where r is equation (6.30) and i,j,k, are unit vectors.
Measuring from the line of nodes results in
r = rcosécos(¢p—N)i +rcosésin(¢ —N)j +rsinbk
where i’ = cos i+ sin N
ot

j = -—sin Qi+ cos 1.

Using the angle relationships from equation (5.1) - (5.3), the above expression is

rewritten as
r = r(cosf cos f) — cos 1 sin 6 sin Q)i
+ r{cos 8 sin 0 + cos 1 sinf cos {1)j + r sin ¢ sin 0k . (6.38)

The velocity is found by differentiating (6.38) with respect to 8 and noting
dr dr df

dt ~ de dt’

The result is

dg " dé dé dt
where
dr, L dr . i an
w - - ¢os 1 sin ﬂﬁsmﬁ—cos t cos ﬂ%r sin 4
.o.di | ) .
+~ sint—sin lrsin# —cos N1r sin @
dé
. dr . dn
-+ cos nZé cos § — sin ﬂﬁr cos 8

— costsin {1r cos @

d7'2 ( .. dn . . .
% = r \—coszsmﬂ—(ﬁsmﬁ—smﬂsmﬁ

79




.ds dan
— sin zﬂcos l sin 8 + cos ﬂ—d?cos é

+ cos tcos {1 cos 0)

dr

+ E(cos 1 cos {1 sin @ + sin {1 cos 6)

drs dr di
= cos # + sin ¢ 8in 0— iy
' =r sin ¢ cos # + sin d0+rcoszsm 20
The requirement now is to find expressions for $;, 92, and #; the expression for

g is eyuation (6.31).

Differentiating the expression for ¢, equation (6.35), and the equation

for (1, equation (6.35), the following equations for % and 41 are obtained:

% = 2Jecssiny
an 4 .
7 - —Jec— §Jce sin y. (6.39)

The expression for % is equation (6.29). By expanding this expression,

the following equation for 2 Z is obtained:

g E L—J e’ cos(2y — 20) — e? cos(2w) N e?s? cos(2y — 26)
dt  r? 15(5s2 — 4) 8
_ e’cos(2y —26) es’cos(y+26) es®cos(y — 26)
60 6 2
N 4es®cosy 4decosy s?cos(20) 2es?cos(w — 6)
3 3 2 3
_ e’s’cos(2w) N e? cos(2w) N s e
8 60

For 12s? —2 <1073
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dt r? 15 5 15 + 5
eJ sin(2w)é + 8e cos(w — 8o) 3)]

dé 13 [1 47 (2e cos(30 — w) 4 2e cos(f + w) + 4e cos(d —w) 2 cos(26)

15 15 *3
D. VERIFICATION OF THE RESULTS
1. Comparison with Brenner and Latta

The comparison of solutions obtained by Brenner and Latta must be
restricted to the J, Je, Je?, and J? terms. Brenner and Latta limited their
analysis in J to these terms and thus avoided the secular terms that arise in JZe?.
No mention is made of the critical inclination in their work because |2s? — 2| does
not appear as a divisor in the terms they included. Similarly, this present analysis
neglected all harmonics in the potential except J; while Brenner included some of
the terms associated with the J; (or D; by their notation) harmonic.

Before comparing solutions, it should be noted that there is some dif-
ference between the two works in the notation used, this analysis preferring the
more standard Astrodynamic notation. Brenner used the co-latitude angle (6) as
a spherical coordinate while the latitude (6) was used here. In addition, Bren-
ner used M as the independent variable where M + 7/2 defines the angle from
the ascending node to the satellite. The independent variable §, measured from
the ascending node to the satellite, was used here. Finally, Brenner defined the

rotation of the line of nodes in an opposite sense to that done here. In summary,
6 — 7/2—6(wherefis co — latitude)
§ — M + n/2(wherefis the polar angle)
7 - -0
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There will also be a difference in the constant terms. Brenner chose
initial conditions that would make the analytical solutions as simple as possible.
This analysis adopted the more general initial conditions that were outlined in
Chapter 5.

Now restricting the comparison to the terms that are left, Brenner’s

solution for 1+ and {1 are respectively:

2
1 = —gJecscosy-i-...
J:Mc 5 4 5J%cs?
N = JMc- 2 c—ngMcsz-ngccsiny-i- 1;5 sin(2m) + ...

A check of equations (6.35) and (6.36) shows there is an exact match of terms of
order J. The final term in Brenner’s solution for Q is a J? term and can be found
in the solution for ;, equation (B.4). Next, Brenner’s abbreviated solution for
uy is

5es’ : 5
: cos(y +2M) + %cos(?hl) — 552 +1+...

These same terms are duplicated in equation (6.17). Finally, Brenner’s solution
for y, is %sz — 2 which is exactly the expression obtained in this analysis.

2. Comparison with an Independent Analysis of Polar and
Equatorial Orbits

Appendix A contains an independent analysis of the polar and equatorial
orbits. Since for the polar case there is no variation of inclination, no rotation of
the line of nodes, nor dependence of the motion on the longitude ¢, new equations
must be derived. The equations cannot be solved in terms of the angles 1+ and (1.

Instead, the equations are solved in terms of the variable A? which is related to

dt
dé*

For the equatorial case the inclination remains constant. The line of

nodes is undefined since the satellite remains in the equatorial plane; however, the
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angle 1) does change with time. Instead of using the polar angle ¢ to measure the
angular displacement of the satellite, the angle ¢, measured from the fixed axis «,

is used. A new dependent coordinate is defined as
Y =¢-K+JY1¢+JY3é.

As Appendix A demonstrates, there is exact agreement between the
special polar case and the general case for s, = 90°. In addition, when the appro-
priate change of variables is made in the equatorial case, it agrees exactly with

the general case at 1, = 0°.
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VII. CONCLUSIONS
AND RECOMMENDATIONS

The results achieved in Chapter VI represent a unique solution to the problem
of a satellite in orbit 2bout an oblate planet. In fact, prior to this present work
the problem had not been solved in this represcatation [Ref. 18, p. 340]. In
contrast to the universal solution presented here, all other methods require a
reformulation of the problem in alternate variables in order to achieve solutions
at various singularities, the most prevalent being the critical inclination.

The results support the theory that at the critical inclination there are no
discernable features in the perturbations of the elements that distinguish it from
any other. This conclusion was reached by Lubowe [Ref. 38|, is shared by Taff
[Ref. 18] and has been corroborated by the physical data. However, all analyti-
cal solutions arrived at via canonic transformations predict perturbations in the
vicinity of the critical to be 25 times greater than those away from it.

The perturbation method used in the analysis embodied the principles out-
lined in Chapter I. First, the resulting solutions are significantly mcre accurate
than the two-body solution. For the appropriate orbits, the relative error of two-
body solution is 1000 times greater than the solution obtained here. Second the
solution was obtained in parameters closely related to the classical orbital elements
and in Cartesian coordinates; no transformation to an alternate non-physical set
of elements was required. Therefore the physical effects are easily distinguishable
throughout the analysis. Finally, as has been noted the solution is valid for all

orbital parameters.
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While the perturbation method was similar to the Method of Strained Co-
ordinates several novel techniques for dealing with secular terms and apparent
singularities were introduced. The verification of these techniques was possible
due to the extensive use of the symbolic computer program MACSYMA which
allowed for the investigation of higher order formulas.

The analysis suggests several areas for further research. The areas include:

e The addition of the higher harmonics of the gravitational potential, e.g., Js,
J¢, etc., to the problem.

o The investigation into the feasibility of including non-conservative perturb-
ing forces such as drag or solar radiation pressure.

o Numerically integrating the equations of motion subject to the initial condi-
tions used here in order to check the analytic results.

¢ An in-depth analysis of the use of canonic transformations in satellite orbit
prediction to include a comparison with the method used here, the purpose
being to determine if the critical inclination singularity is an artifact of the
transformation process.




APPENDIX A
THE POLAR AND EQUATORIAL ORBITS

A. THE POLAR ORBIT
Reference is made to the general equations of motion, equations (5.13) -
(5.15). Now in the case of a polar orbit, the longitude ¢ is a constant. Therefore,

the equations of motion are reduced to

d*r do\® -GM R*/1 3,

;i—t-—g -r (E) = - - 3]2—;2' <§ - Esm 0) (Al)
d { ,d8) GM R? |
E (T E't') = —Jz -3 51n(20) . (A2)

Let J = f—, (Jgf’-;) and u = p/r
where §=h?/GM.

Define a function A such that

r2d—? = hA
so that
d hulA d
i __52 28 (A.3)

Applying (A.3) to (A.2) the independent variable can be changed from t to 6.

Equation (A.2) may be rewritten as

dAa? .
7 —2Ju sin(26). (A.4)
Similarly equation (A.1) becomes
d*u 1+Ju [%‘2 sin(26) + uEimz—zH—ll] As
W -~ u = A? . ( .D)
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To solve (A.4) and (A.5) a solution of the form

A* = 1+JE1+JPE; +... (A.6)
u = lt+ecosy+Ju +J uz+... (A.7)
where vy = 0 —w+ JOy, + J*0y, + ... (A.8)

is assumed.

Substitution of equations (A.6) and (A.7) into (A.4) and equating coefficients of
order J results in:
dE,

T sin({y + 26) + e sin(y — 26) — 2sin(26). (A.9)

A solution of (A.9), ignoring terms of order J? or higher, is

e cos(y + 26)

E, 3

+ e cos(y — 26) + cos(26)
+ Ke?cos(2y — 26). (A.10)

Substituting (A.10), (A.6), and (A.7) into (A.5) yields to order J

d 5e?(2y + 26
k! +u; = 2ecosyy;+ e_(_L_) — €’K, cos(2y — 26)
dé 8

e? cos(2y — 26) N Se cos(y +26)  e*cos(2y) e cos(y)

8 3 4
3e*cos(26) . cos(26) €* 1
4 4 2
The cos y term would produce secular terms in the = .ion to u;, therefore y; is

chosen as % to make the coefficient of cos y zero.
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The resulting equation is

5¢? 2 26 2 - 20
él‘—l-i-ul _ Selcos(2y + )—ezchos(2y-20)+e cos(2y — 26)
dé 8
5e cos(y +26) e?cos(2y)  3e?cos(26)  cos(26)
+ ~ + +
3 4 4 2
e 1
_ et 11
It is assumed that the solution to (A.11) has the following form:
u; = a,+ a;cos(2y + 20) + a; cos(2y — 26)
+ azcos(y + 20) + a5 cos(26). (A.12)

Equation (A.12) is substituted into (A.11). The unknown coefficients may
then be solved for by equating the coefficients which have the same harmonics.

The results are:

_ € 1
© = ~773
e?
a, = ~21
(8K, — 1)¢?
ay, = g
_ Se
a; = ~5
e?
a, = -
e
a; = "1 &

Substitution of these coefficients into (A.12) results in

2 2y + 26
u = —e Cos(zj ) - €2K1 COS(Zy - 20) +

e* cos(2y — 26)
8
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5¢ cos(y + 26) + e’cos(2y) e?cos(26) cos(26)

24 12 4 6
¢ 1
4 2

The following complementary solutions must be added to the particular so-
lution for u to ensure that any secular terms in the second order solution can be

eliminated
—Kjgcos(3y — 26) — Kqcos(y — 26) .

The first order solution for u now has the following form:
e?J cos(2y + 26)
24
e’J (8K, — 1) cos(2y —26)  5eJ cos(y + 26)
8 24

u = 1+ecosy—JKgcos(3y —260) -

— J K7 cos(y — 26)

e?J cos(2y)
12

2 26 goJ
_ Bed+2)Jcos(20) T (A.13)
12 4 2

+J Kgsiny+ J Kgcos y

The expressions for E; and u, are substituted into (A.6) and (A 7) respec-

tively. (A.6) and (A.7) are then substituted into (A.4). The result is

dE,
dé

e’sin(2y + 46)  e?sin(2y + 26)
24 - 12
e*sin(2y — 26)

12
e’sin(2y — 46) . 5e¢ sin(y + 46)
8 24

= —Kssin(3y —46) +

+ €’K, sin(2y — 26) + — €?K, sin(2y — 46)

e sin(y + 26)
6

— Kgsin(y + 260) +

in(y — 26
+ Kocos(y+ 26) + Kssin(y — 28) + S0 =20 _ g cos(y — 26)

e?sin(2y)

— Kpsin(y — 48) + Kssin(3y) + 2K sin(2y) — 5
. 2 . . hY
Sesiny e sin(40Gz) N sin(46)

+ Kysiny — .
T nrsmy 24 4

*sin(26
- C—EZ—(——)*'sin(ZO).
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Integrating this expression for E; would yield a secular term in the harmonic

cos(2y — 28). Therefore the constant K, is chosen as — £ in order to eliminate the

problem term. The equation is now

dE, . e’sin(2y + 46)  e*sin(2y + 26)
—_— = -— 3 —_ —
7 K sin(3y — 46) + 74 12
5¢?sin(2y — 40)  5e sin(y + 46) :
+ ” + oy — Kgsin(y + 26)
i 26 i -
+ es—m('Z;L—) + Kycos{y + 28) + Kgsin(y — 268) + ﬂ(z—z—a)
) ) e sin(2y)
— Kgcos(y — 28) — Kysin(y ~ 46) + K sin(3y) — 1
_ 5esiny e’sin(46) sin(46)
K -
+ Kisiny YR 1 + =
?sin(26
+ e—s—”z’(—l + sin(20).

Integrating the above expression yields

_e’cos(2y +46) €’ cos(2y + 26)

E, = —Kgcos(3y - 49) 114 _ "
N 5e? cos(2y — 46) _ecos(y + 46) N Ky sin(y + 26)
48 24 ' 3
K + 26 + 26
N s cos(y ) K cos(y + 26) + Kysin(y — 20)
3 18
- Kycosly —26) - £l =20)  Krcosly — dz) K cos(3y)
2 3 3
2 2
L€ cos(2y) K cos y Secosy e‘cos(4f) cos(46)
8 24 16 24
_ e? cos(26) _ cos(26) (A.14)
4 2 '

Continuing the procedure results in the following second order expression

d?u, " 0e c eKscos(4y - 28) e*cos(4y — 26)
— 0 r Uy = € COos 2 = -
ar ¢ vy 2 96
eKscos(4y — 48)  Sefcos(dy — 46)  3e3cos(3y ~ 46)
4 576 16
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3e* cos(3y + 26) e® cos(3y — 26)

— 2K cos(3y — 20) —

16 48
35¢? cos(2y + 46) N 5¢ Ky sin(2y + 26) + 5¢ K cos(2y + 26)
32 4 4
5e?cos(2y + 26)  eKysin(2y — 26)
+
12 4
eKgcos(2y — 20) eKycos(2y — 26)  eKjcos(2y — 26)
+ +
4 2 2
e* cos(2y — 26) N Te? cos(2y — 26)
48 24
3eKycos(2y —40) 3eKjzcos(2y — 48)  e*cos(2y — 46)
— +
4 4 32
e?cos(2y —48) Telcos(y + 46)  Te cos(y + 46)
8 8 4
5Kgsin(y +28) 5Kjcos(y + 26)
+
3 3
e cos(y + 26)  13e cos(y + 26)
— - 2K - 26
16 5% + 2K; cos(y )
e®cos(y —20) ecos(y—26) 5Kjcos(y— 46)
16 6 3
55¢°cos(y — 46)  Secos(y — 46)  5eKscos(4y)
144 12 4
Sefcos(dy) 5Kscos(3y) 13e°cos(3y)  eKqsin(2y)
192 3 144 2
eKgcos(2y) 3eKycos(2y) 3eKjscos(2y)
2 4 4
e*cos(2y) 23e*cos(2y) 25€3cos y
32 32 48
17e cos y  5eKycos(46) N 5e'cos(46)  65¢®cos(46)
24 4 192 32
5cos(46) 3eKgzcos(26) eKqcos(26)
+ +
8 2 2
e* cos(26) N 37¢"cos(26) cos(26) eKs
96 \ 48 3 2




It is noted that three harmonics in (A.15) would p..duce secular terms in
the solution to u;. The harmonics are cos(3y — 26), cos(y ~ 26), and cos y. These

harmonics may be eliminated by choosing

s
e
Ks = —&
K, = — (3e% — 8e)
96
_ 25¢% + 34
Y2 = __—96 .

The first order solution for (A.4) is

At=1 + J(cos(20) + € cos(y — 26)

e cos(y +26) e’ cos(2y — 20)) ] (A.16)

3 12
u may now be rewritten as:

e?J cos(2y + 26) N 5¢*J cos(2y —26)  5eJ cos(y + 26)

= 1 -
u +ecosy 2 24 24
e*J cos(y — 26) eJ cos(y — 26) + e?J cos(2y)  €?J cos(26)
24 12 12 4
J 26 JoJ
- —ng—(——)~—JKgsin(w—Ho)+JKgcos(w—00) - -:—— > (A.17)

J6  Jedsin(2y — 26)

25¢ + 34
where y:0——w+—2—+ ‘ )

sl 23
48 + 96

Equations (A.16) and (A.17) satisfy the equations of motion to first order,
and the equations produce no secular terms to second order.

A comparison may now be made between the polar solution derived in this
appendix and the general solutions for y and u, equations {(6.22) and (6.37) respec-

tively. To make the comparison easier, the relatively complex initial conditions
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{equation 5.27) are discarded. Instead, following Brenner and Latta, the initial
condi*ions are selected in order to make the expressions as simple as possible.
In ¢ .ition, constant terms like sin(2w) and cos(2w) are dropped. It will be re-
membered that these constants were added to the general solution to prevent
singularities at the critical inclination. It is a simple exercise to add the cos(2w)
term to the polar case, specifically to equation A.10, and then show that identical
results are achieved with the general case at 1, = 90°. In fact, this has been done.
However, to display these terms adds nothing to the comparison and only serves
to make the analysis more tedious.

Checking equations (6.35) and (6.36), it is seen for the polar case, cos 1, =
¢ = 0, there results

1=1, and N=10,.

This agrees with orbital theory that for the polar case there is no variation of the
inclination nor does the line of nodes rotate.
Setting sin 1, = s = 1 and disregarding the appropriate constants, equations

(6.37) and (6.22) are

e?J cos(2y + 26) . 5e*J cos(2y — 26)  5eJ cos(y ~ 26)

1 -~ ecosy-—

24 24 24
e’J cos(y —20) eJ cos(y —26) €*J cos(2y) _ €*J cos(26)
‘ 24 12 ‘ 12 4
J cos(26 oJ
- —COM — J Kgsin(w — ) + J Kg cos{w — ;) ~ el
6 4 2
and
Jé 3 si — 20 25¢? + 34
y=0—w+ — + J° sin(2y 2)+J2o9(—e—2.
2 48 96

These results agree exactly with the (A.17) and (A.18).
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B. THE EQUATORIAL ORBIT
Reference is again made to the general equations of motion, (5.13) - (5.15).
An orbit that remains precisely in the equatorial plane is possible if only even

& — 0, & =0, and the

harmonics of the potential are considered. Now é = 0°, 5% ' 3¢

equations reduce to
dr_ do__av
ar_ 'dt = ar

249
dt( dt) 0. (A.19)

As in the general case and the polar case the independent variable is changed

(A.18)

by use of the integral obtained from (A.19)

d¢ = constant = h
dt
d u?_ d

Substitution of (A.20) into (A.19), results in

d*u

gz TuE 1 Ju? (A.21)
3 R?
where: J = -1|J;
2 P’
u = p;r

To solve (A.21). assume a solution of the form
u = l+ecosY +Ju;+J%uy;+ ... (A.22)
where Y = o-w~J¢Y, +J%Y,
Substituting (A.22) into (A.21) and equating coefficients of order J results in

d'.’
Ku; ~u;=1~2JY,ecos Y —2Jecos ¥ ~ e?cos?Y. (A.23)
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The presence of the term cos Y will cause secular terms in the solution for u,,
therefore choose Y, = —1. Equation (A.23) is now

d?u, w14 e? + e? cos?
d* ' T2 2

Y. (A.24)
Assume a particular solution to the above equation
u; = a, + a; cos 2Y. (A.25)
Substitution of (A.25) into (A.24) results in the following solution for u,
e 1,
uy =1+ 376 cos(2Y). (A.26)
The approximation for u is:

o
u=1+4+ecosY +J (1 + % — gezcos (2Y)) . (A.27)

The solution must be checked to ensure it causes no secular terms to second order.

Substituting (A.26) and (A.22) into (A.21) results in

d2 3 2Y

d(;t: + Uy = -6—22(__) + e2 COS(2Y) + 2e coOs Y Y2
5e*cos Y
e—%gs——+3ecosY+e2+2.

Note that the terms with cos Y will cause secular terms in u;. Therefore, Y, is
chosen as:

5¢2 3
>

12

The first order solution for u is equation (A.27)

., (5 3
where Y =¢-w—-J¢p—J ¢ ~1§+5 . (A.28)

Equation (A.27) is the correct solution in terms of the variable ¢. To compare
the solution found here to the general solution for the case 6 = 0° will require that

(A.27) and (A.28) be modified such that they are in terms of 4.
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Referring back to Figure (5.1), it is seen that ¢ is measured from the fixed
axis T such that

b=n/2+0+0. (A.29)

Now, from equation (6.27), the first order solution for 1 with ¢, = 0° (sin 1, =

s=0andcosi,=c=1)is
2 J’e’0+J20
6 2’

=0, -Jo+ ¢

4
m sin(2y — 26) —~ gJe sin y —

(A.30)

(Note: As in the polar case, the constant terms cos(2w) and sin(2w) have been

dropped in the general case for comparison purposes. As explained previously,

eliminating these terms does not affect the validity of the comparison.)
Substitution of (A.30) and (A.29) into (A.28) results in

7Je?

7 4
Y=0-w-2J0+ 5 sin(2y — 26) — i-z—Jze20 - gJe sin y. (A.31)

Now, from (6.22), the solution for y with 1, = 0° is
7 122 7 .2
y=0-—w-2J0 - —J%0+ —Je*sin(2y — 2z). (A.32)
12 48
Using equation (A.32), equation (A.31) may be written as
4
Y =y—- -Jesiny.
3
And therefore by use of the Taylor series expansion
4. .,
cos(Y) = cos y + gJe sin‘y.
Equation (A.27) may now be written in terms of y(6):
7, 5,
u:1+ecosy+J(1+ge—6e cosZy). (A.33)
Reference now is made to equation (6.37), the general solution for u. By

letting sin 1, = s = 0 in this equation, it is easily seen that the general expression

becomes (A.33).
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APPENDIX B
2nd ORDER ANALYSIS

Substitution of (6.2) - (6.5), (6.10), (6.16), and (6.17) into (5.23) results in

. . d*; . .., di,
— 2sin 12g 5 6 — g2 5B 6 +sin ¢ 257 % 6 —ZEcos 0
s . _
= ce®Kys*sin(3y — 0) — cKss sin(3y — 0) + L8 8‘2“(3” f)
5ceK,s® sin(3y — 36) ce3K,ssin(3y — 36)

- + cKsssin(3y — 36) +

3 6
Tcess sin(2y + 36) 143ce?ss sin(2y + 6) 29cels sin(2y + 6)
- + _
24 72 18
15ce?s®sin(2y — 6
+ 5ce?Ks3s®sin(2y — 6) + 10ce? K, s%sin(2y — 6) — ce’s snsn( y—0)
Tcelssin(2y — 6)

~ 4ce’Ksssin(2y — ) — 4ce’Kssin(2y — 6) +

6
5ce?s? sin(2y — 36)
8

35ces’sin(y + 36)
24

— 5ce’Kas®sin(2y — 36) + + 4ce’*Kqssin(2y — 36)

— 4ce’K,ssin(2y — 36) — + ce Kyssin(y + 6 + 2w)

—  2ce®K ;5% cos(2w) sin(y + 8) — ce®* Ky s cos(2w) sin(y + 6)

5ces?sin(y + 6)
8
4ce ssin(y + 6)
3
10ce* K, 5% cos(2w) sin(y — 6)
3
ce® K scos(2w)sin(y — 6) 10ceK,;s3sin(y — 8) 5ce’K,ssin(y — 6)
3 * 3 * 3

41ces®sin(y — 0 )
 4lces sllg(y ) _ 9cKessin(y - 8) — ceKys sin(y — 0)

ceKyssin(y — 6) ce®Kyssin(y — 6) . 8cessin(y — 6)
3 6 3

~ 2ceK,s*sin(y + 6) + + 2¢Kgs sin(y + 0)

— ceKpssin(y +6) — — 2cKgscosly + 6)

— ceKyssin(y — 0 + 2w) +




9ces®sin(y — 36)

+ 2cKpscos(y — 0) — ce®Ks®sin(y — 36) +

4
+ ceKyssin(y ~ 36) ce’Kyssin(y — 36)  5ce’s’sin(38)  5es®sin(36)
2 4 3
5ce?s® sin 6
— 10ce’K,s® cos(2w)sin 0 — 10cK,83sin 6 + _cgl_z_sE_
10cs®sin 8 gin # ;
- A e essiné. (B.1)
3 3
Choose K; = ;’4—5(*;:7'_1—:7 and Ks = L;:(T?f—f%*;ﬁ to eliminate the secular terms

sin(2y — #) and sin(2y — 36) in equation (B.1), s0 now

.dQl d* 4N
- 2sin zd—;sin 60— —d—;?zsin 6 + sin 1 d022 cos § — 2£cos 6
39ce®s sin(3y — )  ce®s®sin(3y — )
- _ —cKss sin(3y — 6
18007 — 1440 8 cHss sin(3y —0)
. 11ce®s sin(3y — 6) . 35ce’s sin(3y — 36)  5ce3s3sin(3y — 36)
24C 1800s% — 1440 24
Tce®s sin(3y ~ 36)  7Tce?s®sin(2y + 36)
K;ss sin(3y — 36 -
+ ¢Kss sin(3y ) + 144 o4
. 143ce’s®sin(2y + 8)  29ce’s sin(2y +8)  35ces®sin(y + 36)
72 18 24

78ce®s cos(2w) sin(y + 6)
1800s2 ~ 1440
ce3s® cos(2w) sin(y + 6)  11ce’s cos(2w) sin(y + 6)
4 - 120
5ces®sin(y + 6)
8
4ces sin(y + 0)

+ ceKys sin(y+ 6 + 2w) +

~ 2ceK,s®sin(y + 6) + + 2¢Kss sin{y + 6)

~ ceKyssin(y + 6) ~ — 2cKys cos(y + 0)

70ce3s cos(2w) sin(y — 6)
1800s% — 1440

Sce’s® cos(2w)sin(y — ) Tee®s cos(2w) sin(y — 6)

~ ceKqssin(y — 0 + 2w) —

M 12 72
35ce’s sin(y — §)  10ceKys®sin(y — 8)  5ce’s’sin(y — 6)
1800s* — 1440 3 | 24
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dlces’sin(y - 6
_ 4lces’sin(y—6) 2¢Kys sin(y — 6) — ceKys sin(y — 6)

12
ceK,s sin{y — 0)  Tceds sin(y — 6)  8ces sin(y — 6) ,
- - 55 ¢ -8
3 144 3 + 2¢K;s cos(y — 6)
+ 39ce®s sin(y —36)  ee®s*sin(y — 36) . 9ces®sin(y — 36)
1800s2 — 1440 8 4
11ce®s sin(y — 30)  5ce?s®sin(36)  5cs®sin(36)
in(y — 36) — - -
+ ceKys sin(y ) 540 y 3
4 240ce’s cos(2w)sin §  5ce’s® cos(2w)sin @ ce®s cos(2w) sin 6
1800s% — 1440 4 6
5ce’s®sin §  10cs®sin 6 ce?s si
— 10cK3s®sin 6 + < sl2sm - csasm + = s;m b essinf. (B.2)

Solve for 1, and {1, using the technique described in Chapter 6, Section 5. The
second order expressions for 1, and {1, are respectively

11ce®s cos(3y — 28)  ce3s®cos(3y — 26)  23ce®s cos(3y — 26)

T T 900s? — 720 6 360
_ 2cKss cos(3y — 26)  25ce’s’ cos(2y + 26) 4 29ce?s cos(2y + 26)
3 96 144
. 11ce’s cos(y —26)  2cKos siny  22ce’s cos(2w) cos y
900s? — 720 3 900s? — 720
N ce®s’ cos(2w) cos y _ 23ce®s cos(2w) cos y N 8ceK,s® cos y
3 180 3
. cedsdcos y B 85ces3cos y _ 2cKgscosy  2cKgs cos y
I 6 36 3 3
_ 2ceKpscosy 23ceds cos y N 20ces cos y (B.3)
3 360 9
Q, - 2ce’sin(3y ~ 26)  ce’s® sin(3y — 26) N ce3sin(3y — 26)
75s5% — 60 4 30
4cKssin(3y — 260)  17ce’s’sin(2y + 20)  29ce’ sin(2y + 26)
3 72 144
Tees’sin(y + 26)  2ce’sin(y — 26) N ce3s?sin(y — 26)
36 7552 — 60 12
_ 3ces®sin(y —26)  2cKysin(y —26) 1lce’sin(y — 26)
2 3 360
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—_—f

4ce’ cos(2w) sin y + ce’s? cos(2w)sin y  cedcos(2w) sin y

7552 — 60 2 15
ceds?sin y _ 107ces®sir v _ 4cKgsin y
6 36 3
2cKysiny  23ce’sin y + 28ce sin y + 4cKycos y
3 360 9 3
5ce?s? sin(26) + 5cs®sin(20)  Sce’cos(2w)8 | Sces? cos(2w)d
16 12 75s? — 60 8

ce? cos(2w)b 5ce?s’0  5cs?@  ce*d b
— ————— 4 5cK,s*0 - - - B4
2 e 24 3 6 12 (B-4)

+ 4ceKps®siny +

Substitution of (6.2) - (6.5), (6.10), (6.16), (6.17), (B.3), and (B.4) into equation

(5.24) results in

d?u, + up =2 cos yys 120e* cos(4y — 28)  5e*s* cos(dy — 26)
d? 36000s% — 28800 16
TeKss® cos(dy — 20) N 3le's’ cos(dy — 26) 3¢K; cos(dy — 20)
2 96
_ e'cos(4y — 26) e* cos(4y — 46) 9¢* cos(4y — 46)
240 15000s* — 24000s? + 9600  36000s? — 28800
N 29¢'s! cos(4y — 46)  3eKss® cos(4y — 46) _ 923e's? cos(4y — 46)
192 4 5760
N eKscos(4y ~46)  89e‘cos(4y — 46)  3e®s* cos(3y + 46)
2 7200 16
_ es'cos(3y +26)  21e’s’cos(3y +26)  29¢° cos(3y + 26)
48 8 12
3 8.4
i i s
_ 5e’s? cosé3y — 26) + 8K cos(3y — 26) + 1763 coss(é)iy - 26)
_ 35¢’s'cos(2y + 46) N 3eK7s? cos(2y + 26 + 2w)
32 4
N 3eKgs? cos(2y + 26 — 2w) N 360e! cos(2w) cos(2y + 26)
4 36000s2 — 28800
_ 5e's?cos(2w) cos(2y + 26) N 19¢*s? cos(2w) cos(2y + 26)
16 96
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e* cos(2w) cos(2y + 26) _ 5e*K3s*cos(2y + 26) | 95¢s* cos(2y + 26)

80 2 12
5¢2K;s? cos(2y + 26) _ 65¢e?s? cos(2y + 26) + 3eK7s? cos(2y — 26 + 2w)
4 8 4
3eK3s® cos(2y — 26 — 2w)  4e* cos(2w) cos(2y — 26)
4 150005 — 2400052 + 9600
172¢* cos(2w) cos(2y — 26)  e*s* cos(2w) cos(2y — 26)
36000s2 — 28800 8
Te's? cos(2w) cos(2y — 26) 4 23¢* cos(2w) cos(2y — 26)
80 3600
576e’K; cos(2y — 20)  164e*cos(2y — 26)  2400e? cos(2y — 26)
36000s2 — 28800  36000s® — 28800 + 3600052 — 28800
¢1K 4 cos(2y — 20) - e*s* cos(2y — 26) + 257e2s* cos(2y — 26)
2 72
5eKys®cos(2y — 20)  13eKys®cos(2y — 26)  17€?K,;s? cos(2y — 26)
2 + 6 + 30
29ets? co6s(§2y —20)  245e%s? czsz(Zy —26) 2¢ K7 cos(2y ~ 20)
5e K5 cos(2y — 26) N e*K; cos(2y — 26) 4 67¢* cos(2y — 26)
3 50 3600
e’ cos(2y — 26)  6c* cos(2y — 46) _ 528¢% cos(2y — 46)
12 36000s? — 28800 36000s2 — 28800
e*s? cos(2y — 46) N Se’stcos(2y — 46)  3eKys® cos(2y — 46)
2 16 4
9eKss® cos(2y — 46)  121e*s?cos(2y — 46)  23e?s® cos(2y — 46)
4 240 240
3e K5 cos(2y — 46) N 29¢‘cos(2y — 48)  11e* cos(2y — 40)
2 800 600
3eK;s? cos(2y + 2w) + Ky cos(2y + 2w) - 3eKss? cos(2y — 2w)
2 2
e Ky cos(2y — 2u) — Tels' cos(y +46)  Tes*cos(y + 40)
8 4
TK7s* cos(y + 26 + 2uw) N TKss? cos(y + 26 — 2w)
3 3
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2240¢’ cos(2w) cos(y + 26)  5e’s* cos(2w) cos(y + 26)
36015 — 28800 4
7e*s? cos{ w) cos(y + 26) + 7Te3 cos(2w) cos(y + 26)
12 90
661¢%s! cos(y + 26) + 47es' cos(y + 26)
144 36
10eK;s® cos(y +26)  131e%s® cos(y + 26)
3 24
29¢3 cos(y + 26)

+ 36 + 2K7s® cos(y — 260 + 2w) + 2K¢s? cos(y — 20 — 2w)
480e*cos(y — 28)  25e%s* cos(y — 26) .
~ 3600057 — 28800 + 16 + 10K7s cos(y — 26)

es? cos(y — 26)

—~ 10eK;s* cos(y + 26) +

— 5es® cos(y + 26)

17€3 cos(y — 26)

- 2¢%° —~ 26) -
e’s* cos(y ) 30

— 8Kz cos(y — 26) +

1120¢3 cos(y — 46) . 5es* cos(y — 46)  53s* cos(y — 46)
36000s% — 28800 48 12
5Kys’cos(y —46)  Te’s®cos(y ~468)  Te’ cos(y — 46) __570e* cos(4y)
3 24 180 36000s% — 28800

5etst cos(4y) N 5e¢ K35s? cos(4y) N 19¢4s® cos(4y)  5eKs cos(4y)

32 4 192 2
13e'cos(dy)  1120c’zos(3y)  269¢’s* cos(3y) _ 5K cos(3y)

80 36000s% — 28800 48 3
679¢%s? cos(3y)  677¢° cos(3y) . 816¢* cos(2w) cos(2y)

72 180 3600052 — 28800
11es? cos(2w) cos(2y)  359¢*s’ cos(2w) cos(2y)
8 240

N 17¢* cos(2w) cos(2y) 6e'cos(2y)  528e’ cos(2y)
600 36000s? — 28800  36000s? — 28800

efsfcos(2y) 695e’s*cos(2y) TeKqs*cos(2y)
2 - 96 - 4
5¢Kgs?cos(2y) 21e’K,s?cos(2y)  121e's? cos(2y)
4 N 2 - 240

3007e?s? cos(2y) eKscos(2y)  29efcos(2y)
’ K 2
+ 240 + eKqcos(2y) + 5 + 500

+ 11e*K;s*cos(2y) +

102




1137¢? cos(2y) + 960e3 cos(2w) cos y  15e%s* cos(2w) cos y
200 36000s2 — 28800 4

15352 cos(2w) cos es 2w) cos
- 2 4( w)cos y + cos(;g) Y 4 30eK,s cos v

15€3s% cos 275es%co 3ess?
- y+ sy—26¢:K3.s’cosy——c——&>ﬂ

16 24 4
6les’cosy Telcosy 5eKrs?cos(20 + 2w)  eKgs? cos(20 + 2w)
6 + 6 ¥ 4 + 4
eKys? cos(26 — 2w) + 5eKgs? cos(20 ~ 2w)  180e* cos(46)
4 4 36000s2 — 28800
5e4s cos(46) 65e?stcos(46) 5stcos(46) SeKqs? cos(46)
32 32 8 4
19e4s® cos(46)  e* cos(46) 4 432¢* cos(2w) cos(26)
192 160 3600052 — 28800
1056€? cos(2w) cos(26)  3e*s* cos(2w) cos(20)
36000s? — 28800 8
e?s! cos(2w) cos(26)  19e*s? cos(2w) cos(26)
2 N 80
23es? cos(2w) cos(20)  3e*cos(2w)cos(26)  11e? cos(2w) cos(26)
120 200 300
1 a4
- 362(;,:53:3522808)00 — 3e?K,s% cos(26) — 4K,s* cos(26) — Te's"cos(26) ;25(29)
127¢%s* cos(26)  Ts*cos(26) 9eKrs®cos(28) 3e?K,s?cos(26)
- + +
16 6 2 2
193e*s? cos(26)  95e%s’cos(26)  2s?cos(26)
480 - 12 T3
19¢* cos(26) N 2¢* cos(2w)? __50e* cos(2w)?
300 15000s* — 24000s? + 9600  36000s* — 28800

e'st cos(2w)?  23e's?cos(2w)?  Tetcos(2w)?  R76€*K, cos(2w)

+ K;s*cos(26) +

—~ 4eK;cos(26) +

+
' 32 960 3600 36000s% — 28800
304e! cos(2w) 2400e’ cos(2w)  e*K,s* cos(2w) . 17e4s* cos(2w)

36000s? — 28800  36000s2 — 28800 2 24
5els'cos(2w) 3eKrs?cos(2w) 3eKss?cos(2w)
2 2 2
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19¢2K,s2cos(2w) 533e's?cos(2w) 41e?s?cos(2
2 (2w) _ (2w) _ H1e%s” cos(2w) + eK; cos(2w)

60 720 24
e’K;cos{2w)  19e*cos(2w)  e?cos(2w)
K 2w) — -
eKs cos(2w) 50 T 1800 12
et 17¢* 172 K,s*
- 2K3s* + ———— + 20K,s*
150005% — 2400057 + 9600 _ 3600057 — 28800 | 23° T +20Has
25e's*  437¢%s! + 97s'  TeKqs? Kis? - 31e’K,s® 11K, s* - 847e4s?
192 288 8 12 6 5760
139¢%s? , eK; 17¢*  1l1e?
- 10 - 2. 8.5
72 St 3 T e T (3-5)
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APPENDIX C

THE CRITICAL INCLINATION

This appendix contains a discussion of the critical inclination to include its
mathematical and physical basis and the methods used by various authors to deal
with the problem.

In Chapter 6 it was found that the divisor (5"—":'9‘—2-) often appeared in sec-
ond order terms. A brief explanation was given for the appearance of this divisor,
and it was shown that the apparent singularity may be dealt with in this analy-
sis in a straight-forward fashion. However, in other methods the problem divisor
has caused enormous complications. This divisor or “critical inclination” problem
appears to be universal. Hughes’ investigations [Ref. 32] reveal that every ana-
lytical theory on orbit perturbation analysis contains the critical inclination as an
inherent characteristic. As stated in Chapter 2, the divisor causes an irremovable
singularity in Kozai’s method. Its presence has prompted many authors to devise
verv elaborate techniques to get around the problem with the result that many
otherwise elegant methods are somewhat diminished.

The mathematical reason for the appearance of the problem term is as fol-
lows. It is recalled that one of the secular effects of the Earth’s equatorial bulge is
to cause the line of apsides to rotate. A first order approximation for this rotation
is given by the rate of change of the argument of perigee which from Allan [Ref.
33, is

i—; = %%(SCOSH - 1)
It is readily seen that if ¢ = 63°26', the perigee position is stationary and the

line of apsides does not rotate. When the usual Poisson method of successive
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approximations in terms of a small parameter is adopted for perturbation analysis,
the above equation appears in the denominator of higher order terms.

Coffey [Ref. 34] gives an excellent background discussion on the history of
the critical inclination problem. He states that A. A. Orlov (1957) was perhaps
the first to notice the unusual situation at the critical inclination. Orlov found
that the conventional Lindstedt-Poincaré algorithm failed at this critical inclina-
tion and at zero inclination. Nevertheless, Orlov ignored these exceptional cases
and developed his theories without addressing the problem of singularities. Krause
(1952), Roberson (1957), and Herget and Musen (1958) had all overlooked this
difficulty in their assessment of the long term effects of the J, term on the Kep-
lerian ellipse before Brouwer (1958) finally pointed out the problem to the latter
authors. Brouwer hoped that his use of von Ziepel’s method of eliminating vari-
ables through canonic transformations would allow him to dispose of the terms
that lead to singularities. However, as was pointed out in Chapter 2, his solution
contained singularities at, not only the critical inclination, but also zero inclination
or eccentricity.

Finding no method to fit the critical inclination problem into current theories,
astronomers have devised alternative theories to deal with orbital inclinations near
63°.4. The critical inclination, they reasoned, was a small divisor problem and
therefore could be handled in the standard way introduced by Bohlen [Ref. 35].
That is, in the vicinity of the critical inclination, the solution may be expressed
in terms of the square root of a small parameter, i.e., v/J instead of J. [Ref. 36].
The resulting solutions are totally different in character to the non-singular case
[Ref. 30,. For example, instead of precessing secularly the argument of perigee
will tend to oscillate about a central position. Taff notes the lack of mathematical

rigor in this method of handling the critical inclination by stating that expansions
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in v/J and theories about the libration of perigee are a result of misapplication of
perturbation theories [Ref. 18, p 340].

Usually when singularities arise in celestial mechanics there is a physical
reason for their occurrence. For example, singularities in the solutions for the
motion of asteroids and natural satellites are caused by the fact that their orbital
periods are nearly commensurate with that of the disturbing body. Under the same
circumstances, an artificial satellite may encounter resonant perturbations in its
orbital elements caused by tesseral harmonics. However, such a physical reason
does not seem to suggest itself for the critical inclination problem. Message [Ref.
37] implied that there may be a resonance between the satellite’s mean motion
relative to perigee and its mean motion relative to the ascending node; however,
most skeptics have not been convinced [Ref. 32]. If there were resonance one would
expect to be able to experimentally measure deviations caused by resonances,
but satellite guidance engineers have reported no adverse effects at the critical
inclination.

Another check on the physical effects of resonance should be a numerical
check of the equations of motion at the critical inclination; however, this too
has been inconclusive. Lubowe [Ref. 38] carried out a study in which he inte-
grated a satellite’s equations of motion for periods up to 24 hours with various
initial conditions at inclinations near and away from the critical. He found no
discernible features in the perturbations which distinguished the critical from any
other. However, in a separate analysis, Hughes came to the cpposite conclusion.
Hughes developed the Hamiltonian in terms of the Hill variables and showed that
the critical inclination remained an inherent part of the solution throughout a
multitude of various canonic transformations. He then integrated the equations

of motion numerically and was able to show some resonant effects in the perigee
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height for satellites at the critical inclination. He then reasoned from this analysis
that the critical inclination is unique, that it represents actual physical resonance
and that it is not merely a by-product of the method of solution or the type of
variable used in the analysis.

This disagreement characterizes the lingering debate over the question of
whether the critical inclination is an artifact of the analysis process or a physical
reality. Most textbooks choose to mention the problem; however, few voice an
opinion. Roy [Ref. 20] devotes only two sentences to the subject, merely noting
that some perturbation analyses break down there. Hagihara [Ref. 39], mentions
that the critical inclination is an essential feature of the perturbation process
but notes that heated discussions continue concerning its physical reality. Other
authors, namely Herrick [Ref. 40], Kovalevsky [Ref. 41], and Geyling [Ref. 1
mention the problem and the standard procedure for dealing with it, but they
make no mention of physical effects. Taff [Ref. 18, p 340, takes a firmer position
by stating that it is not a prediction of second-order perturbation theory that
there are infinitely large or infinitely rapid changes in the orbital elements, and
that the correct resolution of these “unphysical” predictions is not to rely on bad
mathematics.

This present analysis lends support to Taff’'s assertion. Although the criti-
cal inclination problem was manifested in the perturbation process, it was shown
that it does not cause singularities, nor are there any unusual physical effects pre-
dicted by this theory. In fact, it was a remarkable aspect of this analysis that
in the limit as the inclination approached the critical, all potential singularities
were canceled. This is not true of the analyses which use the technique of De-
launey /von Ziepel canonic transformations. A remarkable aspect of the canonic

transformation method is that the non-integrability of the equations of motion
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is not obvious when the system is expressed in coordinates or elements, but after
the canonical transformation it is quite clear [Ref. 42]. The critical incliration is

an intrinsic singularity of the method [Ref. 32].
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